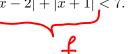
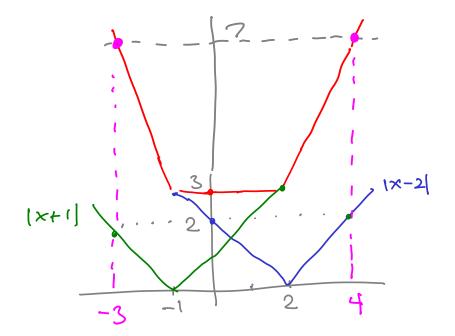
- 1. Suppose C and D are Dedekind cuts. Prove that their intersection $C \cap D$ is a Dedekind cut. Give a concrete example of a sequence of Dedekind cuts (D_n) whose intersection is not a Dedekind cut.
- (i) Since (NDSC≠Q, CND≠Q
- (ii) Since $C,D \neq \phi$ $\exists c \in C, d \in D$ Whose assume $c \in d$. Then $d \in C$, so $d \in C \cap D$. $C \cap D \neq \phi$
- (iii) If x∈C∩D and y > x, since x∈C, y∈C and since x∈D, y∈D, so y∈C∩D :: c∩D is a ray (to the right)
- (iv) Suppose $K = min(C \cap D)$.

 Rays are linearly ordered (C,Drays $\Rightarrow C \leq D$ or $D \leq C$)

 Pf Suppose $C \neq D$ are rays and $C \neq D$, $D \neq C$ Then $\exists c \in C \setminus D$ and $d \in D \setminus C$ Who Gassume $C \leq d$. Then $d \in C \cap C$

WLOG assume DCC. Then CAD = D, So x=min D o 2. Find all real x such that 3 < |x-2| + |x+1| < 7.





$$f = \begin{cases} -x-1-x+2 & \text{for } x<-1 \\ x+1-x+2 & \text{for } x<-2 \\ x+1+x-2 & \text{for } 2 \le x \end{cases}$$

$$= \begin{cases} -2x+1 & \text{for } x<-1 \\ 3 & \text{for } -1 \leq x \leq 2 \\ 2x-1 & \text{for } 2 \leq x \end{cases}$$

$$-2x+1=7$$

$$-2x=6$$

$$x=-3$$

$$2x-1=7$$
 $2x=8$
 $x=4$

Final answer:
$$-3 < x < -1$$
 or $2 < x < 4$
i.e. $x \in (-3, -1) \cup (2, 4)$

3. Suppose A, B are nonempty bounded subsets of **R** that are not disjoint. Prove that $\inf(A \cap B) \ge \min \{\inf A, \inf B\}$. Give a concrete example where the inequality is strict.

If
$$A = (-1, 0]$$
, $B = [0, 1)$, then
$$A \cap B = \{0\}$$
, inf $(A \cap B) = 0$
inf $A = -1$
inf $B = 0$

4. Suppose (x_n) is sequence in R that is not bounded. Prove that (x_n) has a subsequence convergent to $+\infty$ or a subsequence convergent to $-\infty$.
(f (xn) is not bounded, then (xn) is not bleate
or (xn) is not bll below.
Suppose (xn) is not bdd above.
Claim Every tail of (xn) is not bodd above.
Pf Snippose { Xn, n≥k} is bold above by M
Then (xn) is told above by max {M, x1, xk-1}
1 is not an upper tel for (xn), to
$\exists n_1 \qquad x_{n_1} > 1$
2 is not an upper bd for {xn:n>n,}
So $\exists n_2 > n_1 \qquad \times_{n_2} > 2$
? is not an upper ld for {xn:n>n28
$S_{0} \exists n_{3} > n_{2}$ $\forall n_{3} > 3$ etc.
Since nienzenj we have a subsequence
Note: $\forall k \times n_k > k > 0$ $0 < \frac{1}{\times n_k} < \frac{1}{k}$
Note: $\forall k \ x_{n_k} > k > 0$ By Aqueeze law $\frac{1}{x_{n_k}} \Rightarrow 0$ So $x_{n_k} \rightarrow +\infty$:
$\Sigma_{n} \times_{n} \times_{k} \to +\infty$
Similarly if (xn) is not bod below, 3 subseq -> -00

5. Find \limsup and \liminf of the sequence $x_n = (-1)^n - \frac{1}{n}$. Prove your assertion for \liminf .

$$k$$
-th tail $S_k = \{x_n : n \ge k\} = (-1)^k - \frac{1}{k}, (-1)^{k+1} - \frac{1}{k+1} = (-1)^k$

If k is even
$$Sk = 1 - \frac{1}{k}, -1 - \frac{1}{k+1}, 1 - \frac{1}{k+2}$$

Pf Hk
$$Sk < 1$$
, so I is an upper the if $r < 1$, by Archimedean property

 $\exists n > \max\{k, \frac{1}{1-r}\}$, then $\frac{1}{n} < 1-r$,

 $fo - \frac{1}{n} > r-1$, so $1-\frac{1}{n} > 1+r-1=r$
 $fo - \frac{1}{n} > r-1$, so $1-\frac{1}{n} > 1+r-1=r$

$$\therefore \lim \sup_{n \to \infty} x_n = \lim_{n \to \infty} 1 = 1$$

inf
$$s_k = -1 - \frac{1}{k+1}$$

:. live inf
$$k_n = \lim_{k \to 0} (-1 - \frac{1}{k+1}) = -1$$

6. Suppose (x_n) is a bounded sequence and $\limsup x_n$ and $\liminf x_n$ belong to an open interval (a,b). Prove that $\exists k \in \mathbb{N} \ \forall n \in \mathbb{N} \ n \geq k \Rightarrow x_n \in (a,b)$.

Let Sm={xn:n>m} be the m-th tail.

het $C_1 = b - lim sup \times n$ a liminfx, limsup $\frac{b}{b}$

Since Sup Sm -> lim sup Xn, 3k,

Y m > k, lim sup Xn-E, < Sup Sm < lim sup Xn+E,

= lim sup Xn + b-lim sup Xn = b

Similarly, let $\Sigma z = \liminf_{n \to \infty} x_n - a$ Since $\inf_{n \to \infty} S_n \to \lim_{n \to \infty} \inf_{n \to \infty} x_n$, $\exists k_2$

 $\forall m > k_2 \qquad \lim_{n \to \infty} \inf_{x_n - \varepsilon_2} \leq \inf_{x_n - \varepsilon_n} \lim_{n \to \infty} \inf_{x_n + \varepsilon_n} \inf_{x_n + \varepsilon_n} \sum_{x_n - \varepsilon_n} \lim_{n \to \infty} \inf_{x_n + \varepsilon_n} \sum_{x_n - \varepsilon_n} \lim_{n \to \infty} \inf_{x_n + \varepsilon_n} \sum_{x_n - \varepsilon_n} \lim_{n \to \infty} \inf_{x_n - \varepsilon_n} \sum_{x_n - \varepsilon_n} \lim_{n \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} \lim_{x_n - \varepsilon_n} \sum_{x_n - \varepsilon_n} \lim_{n \to \infty} \lim_{n \to \infty$

For $m \ge \max \{k_1, k_2\}$, if $n \ge m$, then $x_n \in S_m$, so $a < \inf S_m \le x_n \le \sup S_m < b$ i.e. $x_n \in (a, b)$ 7. Prove that every convergent sequence in **R** is Cauchy.

Suppose
$$x_n \rightarrow L$$

Given $\xi > 0$ $\exists k$ $\forall n \ni k$ $|x_n - L| \leq \frac{\xi}{2}$

If $m, n \ni k$ $|x_n - x_m| = |x_n - L + L - x_m|$
 $\leq |x_n - L| + |L - x_m| \leq \frac{\xi}{2} + \frac{\xi}{2} = \xi$

(5)

8. Suppose $\sum x_n$ is convergent. Prove that the sequence (x_n) converges to 0.

Let
$$S_k = \sum_{n=1}^k x_n$$
, then S_k converges.
Say $S_k \to S_-$ Also $S_{k-1} \to S_-$
So $a_k = S_k - S_{k-1} \to S_- = 0$