Final exam / 2023.5.10 / MAT 3013.001 / Foundations of Mathematics

1. Let
$$S = \left\{ \frac{n}{n+1} : n \in \mathbf{N} \right\} \subseteq \mathbf{R}$$

Does S have a sup? inf? max? min? If so, find them. Prove your assertions.

Note:
$$\frac{n}{n+1} = \frac{n+1-1}{n+1} = 1 - \frac{1}{n+1}$$

Note:
$$\frac{n}{n+1} = \frac{n+1-1}{n+1} = 1 - \frac{1}{n+1}$$

$$\min S = \frac{1}{2} \quad (\text{Se inf } S = \frac{1}{2})$$

Pf: (i)
$$\frac{1}{2} \in S$$

Pf: (i)
$$\frac{1}{2} \in S$$
 (ii) if $1 - \frac{1}{n+1} \in S$, then $1 - \frac{1}{n+1} > \frac{1}{2}$

Work:
$$1 \ge 1$$
, $n + 1 \ge 2$, $\frac{1}{n+1} \le \frac{1}{2}$, $-\frac{1}{n+1} \ge -\frac{1}{2}$, $1 - \frac{1}{n+1} \ge 1 - \frac{1}{2} = \frac{1}{2}$

S has no max

Pf: Suppose
$$[-\frac{1}{n+1} \in S]$$
, then $[-\frac{1}{(n+1)+1} =]-\frac{1}{n+2} \in S$ and $[-\frac{1}{n+1} <]-\frac{1}{n+2}$

Work:
$$1 < 2$$
, $n+1 < n+2$, $\frac{1}{n+1} > \frac{1}{n+2}$, $-\frac{1}{n+1} < -\frac{1}{n+2}$, $1-\frac{1}{n+2} < 1-\frac{1}{n+2}$

Pf: (i) upper bound:
$$\left|-\frac{1}{n+1} < 1\right|$$

Work:
$$n+1>0$$
 & $\frac{1}{n+1}>0$ \$5 $-\frac{1}{n+1}<0$ \$5 $1-\frac{1}{n+1}<1$

Scratch work:
$$-\frac{1}{n+1} > 6-1$$
, $\frac{1}{n+1} < \frac{1-6}{1-6}$, $n > \frac{1}{1-6} - 1$

By the Archimedean principle,
$$\exists n \in \mathbb{N}$$
 $n > \frac{1}{1-4} - 1$

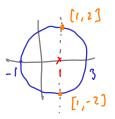
2. Determine whether each of the following relations $S: \mathbf{R} \to \mathbf{R}$ is a function. Prove your assertions.

(a)
$$S = \{[x, y] \in \mathbf{R}^2: (x - 1)^2 + y^2 = 4\}$$

(b)
$$S = \{[x, y] \in \mathbf{R}^2 : \underbrace{|y| < 1}_{y < 1}$$

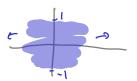
a) NoTA Function

Vertical line test:
$$[1,2]$$
, $[1,-2]$ \in $[$



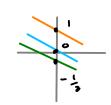
by NoTA Function

Vertical line test:
$$[0, \frac{1}{2}]$$
, $[0, 0] \in S$



- 3. Define $f: \mathbf{R}^2 \to \mathbf{R}$ by f(x, y) = x + 2y
 - (a) Prove that f is onto.
 - (b) Sketch the fibers $f^{-1}(\{-1\}), f^{-1}(\{0\}), f^{-1}(\{2\})$ on the same graph.

6)
$$f^{-1}(\{-1\}) = \{[x,y] \in \mathbb{R}^2 : x + 2y = -1\}$$
 $y = \frac{-x-1}{2}$
 $f^{-1}(\{0\}) = \{[x,y] \in \mathbb{R}^2 : x + 2y = 0\}$
 $f^{-1}(\{2\}) = \{[x,y] \in \mathbb{R}^2 : x + 2y = 2\}$

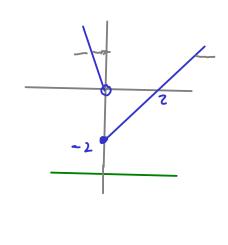


4. Define
$$f: \mathbf{R} \to \mathbf{R}$$
 by $f(x) = \begin{cases} -2x & \text{for } x < 0 \\ x - 2 & \text{for } x \ge 0 \end{cases}$

- (a) Prove that f is not onto.
- (b) Find the following images and preimages: $f([-1,1]), f^{-1}([2,\infty))$

(forward image preserve unions)

$$f^{-1}([2,\infty)) = (-\infty,-1] \cup [4,\infty)$$



5. With f as in preceding problem, give concrete examples of subsets $E, D \subseteq \mathbf{R}$ such that $D \neq f^{-1}(f(D))$ and $E \neq f(f^{-1}(E))$

Let
$$E = \{-3\}$$
, then $f(f^{-1}(E)) = f(\emptyset) = \emptyset$