Midterm 2 / 2020.4.22 / MAT 3013.001 / Foundations of Mathematics

1. Give two different proofs that the sum of all binomial coefficients $\binom{n}{k}$ for a fixed n is 2^n . One using the Binomial theorem and one not.

Binomial theorem:
$$(a+b)^n = \sum_{k=0}^n {n \choose k} a^{n-k} b^k$$

Plug in $a=b=1$ $2^n = \sum_{k=0}^n {n \choose k}$ 0

 2^{n-d} proof: $\binom{n}{k}$ = # of Subsets of $\{1,...n\}$ of size k $\frac{n}{k} \binom{n}{k} = total # of Subsets of <math>\{1,...n\}$ k = 0

this = 2°, because a subset of {1,...n} is
determined by whether each element is in the subset
or not. That's 2 chaices per element.

By the product rule we get 2.2...2 = 2°

"

- 2. Prove that the following relations R on a set X are equivalence relations. Sketch several equivalence classes (use different colors for each class). Can you identify the quotient sets X/R?
 - (a) $X = \mathbf{N} \times \mathbf{N}$. $[m, n]R[k, l] \Leftrightarrow m + l = k + n$.
 - (b) $X = \mathbf{R}$. $xRy \Leftrightarrow x y \in \mathbf{Z}$.
- a) (i) reflexive: m+n=m+n so [m,n] R[m,n]
- (ii) Symmetric: by inspection.
- Ciii) Transitive: If [m,n]R[k,e] and [k,l]R[r,s] m+l=k+n and k+s=r+l, so m+l+s=k+n+s=n+r+l, so m+s=r+n,

 So [m,n]R[r,s]. [1,1]R[2,2]R[3,3] etc.

[1,1]R[2,2]K[3,3] etc. [2,1]R[3,2]R[4,3] etc. [3,1]R[4,2]R[5,3] etc. [1,2]R[2,3]R[3,4]etc. [1,3]R[2,4]etc.

Draw a line through each equivelence $c^{(ass)}$. The x intercepts are integers, so $X/R \cong \mathbb{Z}$

- b) (i) reflexive: $\forall r \in \mathbb{R} \quad r r = 0 \in \mathbb{Z}$
 - (ii) Symmetric: If r-s & Z, s-r = -(r-s) & Z
 - (iii) transitive: If r-sez and s-tez,

(1-5)+(5-t) = r-t & Z. Wrap 12 into a

:X/R is a circle

3. Let $S=\{x\in \mathbf{Q}\colon \exists n\in \mathbf{N}\ x=1/n\}$ Find $\max S$ and $\min S$ if they exist. Same for $\sup S$ and $\inf S$. Prove your assertions.

- (i) max S=1 (so sup S=1)
- (iii) min S D.N.E
 - (iii) inf S = 0
- (i) 1=1∈5. Yn∈N 1≤n, b 1≥h. Ü
- (ii) Let $x \in S$. Then $\exists n \ x = \frac{1}{n}$. Also $\frac{1}{n+1} \in S$ Since n+1 > n, $\frac{1}{n+1} < \frac{1}{n}$, so $\frac{1}{n}$ is $n \in S$
- (iii) An EN \$ >0, so 0 is a lower bound for S.

Let r>0. By the Archimedian principle, $\exists n \in \mathbb{N} \quad n > \frac{1}{r}$. Then $\frac{1}{n} \in S$ and $\frac{1}{n} < r$. $\vdots \quad r$ is $n \in I$ a bover bound for S. \vdots 4. Suppose A is a set and $B_k \subseteq A$ for $k \in K$, where K is a nonempty indexing set. Let $S = \{B_k : k \in K\} \subseteq \mathscr{P}(A)$. Show that for the partial order \subseteq on $\mathscr{P}(A)$ we have $\sup S = \bigcup S$ and $\inf S = \cap S$.

Let
$$T \subseteq U S$$
. If T is an upper bound for S , then $Y \ni E \times B$, $S = T$, so $T = U S$ in $U S = S = S \cap S$.

Let $X \in U \cap S \cap S$.

Then $3j \times E \cap S$, so $X \in T$.