1. Give two different proofs that the sum of all binomial coefficients $\binom{n}{k}$ for a fixed n is 2^{n}. One using the Binomial theorem and one not.

Binomial theorem: $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$ $p \operatorname{lng}$ in $a=b=1 \quad 2^{n}=\sum_{k=0}^{n}\binom{n}{k} \quad i$

2nd proof: $\binom{n}{k}=$ \# of subsets of $\{1, \ldots n\}$ of size le

$$
\therefore \sum_{k=0}^{n}\binom{n}{k}=\text { total \# of sinbiet of }\{1, \ldots n\}
$$

This $=2^{n}$, be cause a subset of $\{1, \ldots n\}$ is determined by whether each element is in the subset or not. That's 2 choices per element.
By the product rule we get $\underbrace{2 \cdot 2 \ldots 2}_{n}=2^{n}$ "̈
2. Prove that the following relations R on a set X are equivalence relations. Sketch several equivalence classes (use different colors for each class). Can you identify the quotient sets X / R ?
(a) $X=\mathbf{N} \times \mathbf{N} . \quad[m, n] R[k, l] \Leftrightarrow m+l=k+n$.
(b) $X=\mathbf{R} . \quad x R y \Leftrightarrow x-y \in \mathbf{Z}$.
a) (i) reflexive: $m+n=m+n$ so $[m, n] R[m, n]$
(ii) Symmetric: by inspection.
(iii) Transitive: If $[m, n] R[k, l]$ and $[k, l] R[r, s]$ $m+l=k+n$ and $k+s=r+l$, so

$$
m+l+s=k+n+s=n+r+l \text {, se } m+s=r+n \text {, }
$$

So $[m, n] R[r, s]$. $[1,1] R[2,2] R[3,3]$ etc.

$$
[2,1] \in[3,2] \in[4,3] \text { etc. }
$$

$$
[3,1] R[4,2] \in[5,3] \text { etc. }
$$

$$
[1,2] R[2,3] R[3,4] \text { etc. }
$$

$$
[1,3] \cap[2,4] \text { etc. }
$$

Draw a line through each equivalence c lass.
The x intercepts are integers, to $X / R \cong \mathbb{Z}$
b) (i) reflexive: $\forall r \in \mathbb{R} \quad r-r=0 \in \mathbb{R}$
(ii) symmetric: If $r-s \in \mathbb{Z}, s-r=-(r-s) \in \mathbb{Z}$
(ii:) transitive $=$ If $r-s \in \mathbb{Z}$ and $s-t \in \mathbb{Z}$, $(r-s)+(s-t)=r-t \in \mathbb{Z}$. wrap \mathbb{R} into a

$\therefore X / R$ is a circle
helix, each loup of length 1.
Draw a vertical line through each eq. class and you get a pt. on a circle.
3. Let $S=\{x \in \mathbf{Q}: \exists n \in \mathbf{N} x=1 / n\}$ Find $\max S$ and $\min S$ if they exist. Same for $\sup S$ and $\inf S$. Prove your assertions.

(i) $\max S=1$ (so $\sup S=1$)
(ii) $\min S$ D.N.E
(iii) inf $S=0$
(i) $\quad l=\frac{1}{1} \in S^{\prime} . \forall n \in \mathbb{N} \quad 1 \leqslant n$, bo $l \geqslant \frac{1}{n} . \ddot{U}$
(ii) Let $x \in S$. Then $\exists n x=\frac{1}{n}$. Also $\frac{1}{n+1} \in S$ Since $n+1>n, \frac{1}{n+1}<\frac{1}{n}$, So $\frac{1}{n}$ is not a min U^{\prime}
(iii) $\forall u \in \mathbb{N} \frac{1}{n}>0$, so 0 is a lower bound for S.

Let $r>0$. By the Archimedian principle, $\exists n \in N \quad n>\frac{1}{r}$. Then $\frac{1}{n} \in S$ and $\frac{1}{n}<r$. $\therefore r$ is $n \Omega$ a lower bound for S. ت
4. Suppose A is a set and $B_{k} \subseteq A$ for $k \in K$, where K is a nonempty indexing set. Let $S=\left\{B_{k}: k \in K\right\} \subseteq \mathscr{P}(A)$. Show that for the partial order \subseteq on $\mathscr{P}(A)$ we have $\sup S=\cup S$ and $\inf S=\cap S$.
$\forall j \in K \quad B_{j} \subseteq \bigcup_{k \in K} B_{k}(=U S)$, so $\cup S$ is an upper bound for S '.

Let $T \subseteq U S$. If T is an upper bound for S, then

$$
\begin{aligned}
& \forall j \in K \quad B_{j} \subseteq T, \text { so } \cup B_{k} \subseteq T \text {, so } T=U S \\
& \therefore \cup S=\sup S \text { Let } x \in \cup B_{k} \\
& \therefore \quad \text { Then } \exists j x \in B_{j} \text {, so } x \in T
\end{aligned}
$$

$\forall j \in K \bigcap \bigcap_{k \in K} B_{k} \subseteq B_{j}$, so $\cap S$ is a lower bound for S^{\prime}.
If P is a lower bound for $S, \forall j \in K P \subseteq B_{j}$,
So $P \subseteq \bigcap_{k \in K} B_{k}$, so $P=\cap S$, $\quad \because$
Let $x \in P$, then $\forall j \in K \quad x \in B$; so $x \in \cap S$.

