Midterm 1 / 2020.2.26 / MAT 3013.001 / Foundations of Mathematics

1. Construct a truth table to establish the equivalence of implication with its contrapositive. In other words, use a truth table to prove $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$.

2. Translate "everybody loves somebody sometime" into the formal language of predicate calculus. Negate it and translate the negation back into human language.

Let
$$p(x_iy_it)$$
 denote x boxes y et time t .
 $\forall x \exists y \exists t \quad p(x_i, y_it)$
Negebion: $\exists x \forall y \forall t \quad \sim p(x_i, y_it)$
Someone doesn't love anybody, anytime,

3. Show that for arbitrary sets A, B, C, D we have $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$ and provide a concrete counterexample to subset the other way.

"C" Let [x,y]
$$e(A \times B) \cup (C \times D)$$

Then [x,y] $\in A \times B \vee [x,y] \in C \times D$
Lf [x,y] $\in A \times B$, then $x \in A \wedge y \in B$,
So $x \in A \cup C \wedge y \in B \cup D$
So $[x,y] \in (A \cup C) \times (B \cup D)$ \forall
Then $A = \{i\}$ $A \times B = \{[i,2]\}$
 $B = \{23 \quad C \times D = \{[3,4]\}$
 $C = \{33\}$ $(A \times B) \cup (C \times D) = \{[i,2],[3,4]\}$
 $D = \{4\}$
 $A \cup C = \{1,3\}$, $B \cup D = \{2,4\}$
 $(A \cup C) \times (B \cup D) = \{[1,2],[1,4],[3,2],[3,4]\}$
 $\therefore (A \cup C) \times (B \cup D) \notin (A \times B) \cup (C \times D)$ \dddot

4. For each $n \in \mathbf{N}$ let $A_n = \{x \in \mathbf{R} : 0 \le x \le 1/n\} = [0, 1/n]$. Find the union and the intersection of this family of sets. Prove your assertions.

(i)
$$\bigcup_{n=1}^{\infty} A_n = [0,1]$$

Pf " \subseteq " let $a \in \bigcup_{n=1}^{\infty} A_n$. Then $\exists k \quad a \in A_k$.
So $0 \leq a \leq \frac{1}{k}$, but $\frac{1}{k} \leq 1$ So $0 \leq a \leq |= [0,1]$
" \supseteq " If $a \in [0,1]$, then $a \in A_1$, so $a \in \bigcup_{n=1}^{\infty} A_n$
(i) $\bigcap_{n=1}^{\infty} A_n = \{0\}$

"C" Let
$$a \in \bigcap_{n=1}^{\infty} A_n$$
. Then $\forall k \in \mathbb{N} \quad a \in A_k$.
The particular: $a \ge 0$, so $a = 0 \lor a > 0$
The particular: $a \ge 0$, so $a = 0 \lor a > 0$

If a > 0, Pick $k > \frac{1}{a}$ (Archimedean property) Then $a > \frac{1}{k}$, so $a \notin A_k$

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

5. Use the principle of mathematical induction to prove Faulhaber's formula

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Bassis for induction $(n=1)$: $1^2 = \frac{1}{(1+1)(2+1)}$
Inductive step: let $n > 1$ and assume
 $\forall m < n$ $\sum_{k=1}^{m} k^2 = \frac{m}{(m+1)(2m+1)}$
 $k = 1$
In particular, for $m = n-1$ assume
 $\frac{n-1}{2}k^2 = (n-1)(n-1+1)(2(n-1)+1) = (n-1)n(2n-1))$
 $k = 1$
 k

Then
$$\sum_{k=1}^{n} k^{2} = \sum_{k=1}^{n-1} k^{2} + n^{2} = \frac{(n-1)n(2n-1)}{6} + n^{2}$$

 $= \frac{n}{6} \left[\frac{(n-1)(2n-1) + 6n}{2n^{2} - n - 2n + 1 + 6n} \right]$
Meanwhile:
 $\frac{n(n+1)(2n+1)}{6} = \frac{n}{6} \left[2n^{2} + 2n + n + 1 \right]$
 $= \frac{2n^{2} + 3n + 1}{2n^{2} + 3n + 1}$