1. Let $f: \mathbf{R} \backslash\{-1\} \rightarrow \mathbf{R}, f(x)=\frac{x}{x+1}$.
(a) Prove that f is not an increasing function on its domain, but its restrictions to intervals $\left.f\right|_{(-\infty,-1)}$ and $\left.f\right|_{(-1, \infty)}$ are strictly increasing.
(b) Find a codomain for $\left.f\right|_{(-1, \infty)}$ that makes the function bijective. Find the compositional inverse of our function. Sketch both our function and its inverse on the same set of axes.
a)

$$
\begin{aligned}
& f(-2)=2>f(0)=0 . \\
& f(x)=\frac{x}{x+1}=\frac{x+1-1}{x+1}=1-\frac{1}{x+1}, 0<x_{1}+1<x_{2}+1, \text { set axes. } \\
& \text { If }-1<x_{1}<x_{2}, \quad 0 \\
& \frac{1}{x_{1}+1}>\frac{1}{x_{2}+1}, \text {, }-\frac{1}{x_{1}+1}<-\frac{1}{x_{2}+1}, \text { so } f\left(x_{1}\right)<f\left(x_{2}\right) \\
& \text { If } x_{1}<x_{2}<-1, \quad x_{1}+1<x_{2}+1<0, \text { so } \\
& \frac{1}{x_{1}+1}>\frac{1}{x_{2}+1}, \infty-\frac{1}{x_{1}+1}<-\frac{1}{x_{2}+1}, \text { so } f\left(x_{1}\right)<f\left(x_{2}\right)
\end{aligned}
$$

b) $x>-1 \Leftrightarrow y<1$, so pick $(-\infty, 1)$ for Codomain.

Let $y=1-\frac{1}{x+1}$. Then $\frac{1}{x+1}=1-y$, so $x+1=\frac{1}{1-y}$
se $x=\frac{1}{1-y}-1$. Switch $=y=\frac{1}{1-x}-1=\frac{x}{1-x}$
Check:: $1-\frac{1}{\frac{1}{1-x}-1+1}=1-(1-x)=x$

$$
\frac{1}{1-\left(1-\frac{1}{x+1}\right)}-1=x+1-1=x
$$

2. Let $f: \mathbf{R} \rightarrow \mathbf{R}, f(x)=x^{2}+1$. Find and sketch:
(a) $f([-1,0] \cup[2,4])$.
(b) $f^{-1}([-1,5] \cup[17,26])$.
a)

$$
\begin{aligned}
& f([-1,0])=[1,2] \\
& f([2,4])=[5,17] \text {, s } \\
& f([-1,0] \cup[2,4])=[1,2] \cup[5,17]
\end{aligned}
$$

b)

$$
\begin{aligned}
& f^{-1}([-1,5])=[-2,2] \\
& f^{-1}([17,26])=[-5,-4] \cup[4,5], \text { so } \\
& f^{-1}([-1,5] \cup[17,26])=[-2,2] \cup[-5,-4] \cup[4,5]
\end{aligned}
$$

3. Suppose $f: A \rightarrow B$ is a function and R is a relation on A given by $x R y \Leftrightarrow f(x)=f(y)$.
(a) Prove that R is an equivalence relation.
(b) Prove that nonempty fibers of f are equivalence classes under R and vice versa.
a) (i) Reflexive: $\forall x \in A \quad f(x)=f(x)$, so $x R x$
(ii) Symmetric: If $x R_{y}, f(x)=f(y)$, so $y R_{x}$
(iii) Transitive : If $x R y \wedge y R z, f(x)=f(y) \wedge$

$$
f(y)=f(z) \text {, so } f(x)=f(z) \text {, se } x R z
$$

b) Suppose $f^{-1}(\{y\})$ is a nonempty fiber.

Then $\exists x \in A, f(x)=y$.
Further, $x^{\prime} \in f^{-1}(\{y\}) \Leftrightarrow f\left(x^{\prime}\right)=y=f(x)$,
So $f^{-1}(\{y\})=x / R$

Conversely, given $x \in A, x \in x / R$, so $x / R \neq \varnothing$ and is the fiber of $f(x)$.
4. Suppose $f: A \rightarrow B$ is a function and R is an equivalence relation on B with exactly two distinct equivalence classes $U, V \subseteq B$. Prove that $\left\{f^{-1}(U), f^{-1}(V)\right\}$ is a partition of A.

Since U, V are equivalence classes, they partition B, so $U \cup V=B$ and $U \cap V=\phi$.

Let $x \in A$, then $f(x) \in B$, so $f(x) \in U \quad V f(x) \in V$, se $x \in f^{-1}(u) \wedge x \in f^{-1}(v)$
so $\quad x \in f^{-1}(u) \cup f^{-1}(v)$

$$
\therefore \quad A=f^{-1}(u) \cup f^{-1}(v) .
$$

$$
\text { If } x \in f^{-1}(u) \cap f^{-1}(v), x \in f^{-1}(u) \wedge x \in f^{-1}(v)
$$

se $f(x) \in U \wedge f(x) \in V$, but $u \cap V=\varnothing \quad \ddot{ }$

$$
\therefore \quad f^{-1}(u) \cap f^{-1}(v)=\phi
$$

