Final exam / 2020.5.11 / MAT 3013.001 / Foundations of Mathematics

1. Let
$$f: \mathbf{R} \setminus \{-1\} \rightarrow \mathbf{R}, f(x) = \frac{x}{x+1}$$
.

- (a) Prove that f is not an increasing function on its domain, but its restrictions to intervals $f|_{(-\infty,-1)}$ and $f|_{(-1,\infty)}$ are strictly increasing.
- (b) Find a codomain for $f|_{(-1,\infty)}$ that makes the function bijective. Find the compositional inverse of our function. Sketch both our function and its inverse on the same set of axes. h - c

a)
$$f(-2) = 2 > f(0) = 0$$
.
 $f(x) = \frac{x}{x+i} = \frac{x+i-1}{x+i} = 1 - \frac{1}{x+i}$
 $if -i < x_i < x_2$, $0 < x_i + i < x_2 + 1$, so
 $\frac{1}{x_i+i} > \frac{1}{x_2+i}$, so $-\frac{1}{x_i+i} < -\frac{1}{x_2+i}$, so $f(x_i) < f(x_2)$

$$\begin{aligned} |f \quad X_1 < X_2 < -1, \quad X_1 + | < X_2 + | < 0, \\ & \leq 1 \\ x_1 + | \quad > \frac{1}{X_2 + |}, \quad y \quad - \frac{1}{X_1 + |} < - \frac{1}{X_2 + |}, \quad y \quad f(x_1) < f(x_2) \end{aligned}$$

Let
$$y = [-\frac{1}{X+1}]$$
, Then $\frac{1}{X+1} = [-y]$, so $X+1 = \frac{1}{1-y}$
So $X = \frac{1}{1-y} - [-y]$. Switch: $y = \frac{1}{1-x} - 1 = \frac{x}{1-x}$
Check: $[-\frac{1}{1-x} - 1+1] = [-(1-x) = x]$
 $\frac{1}{1-(1-\frac{1}{X+1})} - [-(1-x) = x]$

2. Let $f: \mathbf{R} \to \mathbf{R}, f(x) = x^2 + 1$. Find and sketch:

- (a) $f([-1,0] \cup [2,4]).$
- (b) $f^{-1}([-1,5] \cup [17,26]).$

- 3. Suppose $f: A \to B$ is a function and R is a relation on A given by $xRy \Leftrightarrow f(x) = f(y)$.
 - (a) Prove that R is an equivalence relation.
 - (b) Prove that nonempty fibers of f are equivalence classes under R and vice versa.

a) (i) Reflexive:
$$\forall x \in A$$
 $f(x) = f(x)$, so $x R x$
(ii) Symmetric: $|f x Ry$, $f(x) = f(y)$, so $y Rx$
(iii) Transitive: $|f x Ry \land y Rz$, $f(x) = f(y) \land$
 $f(y) = f(z)$, so $f(x) = f(z)$, so $x Rz$

b) Suppose
$$f'(\xi_y z)$$
 is a nonempty fiber.
Then $\exists x \in A$, $f(x) = y$.
Further, $x' \in f'(\xi_y z) \equiv f(x') = y = f(x)$,
So $f'(\xi_y z) = x / R$

Conversely, given
$$x \in A$$
, $x \in x/R$, so $x/R \neq \phi$
and is the fiber of $f(x)$.

4. Suppose $f: A \to B$ is a function and R is an equivalence relation on B with exactly two distinct equivalence classes $U, V \subseteq B$. Prove that $\{f^{-1}(U), f^{-1}(V)\}$ is a partition of A.

Since U, Vare equivalence classes, they partition B, so
$$UUV = B$$
 and $U \cap V = \phi$.

Let
$$x \in A$$
, then $f(x) \in B$, so $f(x) \in U \setminus f(x) \in V$,
so $x \in f^{-1}(u) \wedge x \in f^{-1}(v)$
so $x \in f^{-1}(u) \cup f^{-1}(v)$
 $\therefore A = f^{-1}(u) \cup f^{-1}(v)$.

If
$$x \in f^{-1}(u) \cap f^{-1}(v)$$
, $x \in f^{-1}(u) \wedge x \in f^{-1}(v)$
so $f(x) \in U \wedge f(x) \in V$, but $U \wedge V = \phi$
 $\therefore f^{-1}(u) \cap f^{-1}(v) = \phi$