1. Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5\end{array}\right] \cdot \begin{aligned} & r_{2} \rightarrow r_{2}-r_{1} \\ & r_{3} \rightarrow r_{3}-r_{1}\end{aligned}$
(a) Find a basis for the kernel of A.
(b) Find a basis for the image of A.
(c) Describe and sketch the kernel and the image of A.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 2 & 4
\end{array}\right] r_{3} \rightarrow r_{3}-2 r_{2}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]} \\
& \operatorname{rref}(A)=\left[\begin{array}{ccc}
11 & 0 & -1 \\
0 & b_{2} \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
r_{1} \rightarrow r_{1}-r_{2} \\
y-z=0 \\
y+2 z=0
\end{array}
\end{aligned}
$$

$$
\text { pivot } \uparrow_{\text {fueveriable }}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
z \\
-2 z \\
z
\end{array}\right]=z\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \quad \text { Basis for } \operatorname{ker} A:\left\{\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\right\}} \\
& \text { image }(A)=\operatorname{span}\left(\operatorname{col}_{4} A\right)=\underbrace{\sin }_{\text {Spanin.indep. }}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{c}
1 \\
3 \\
5
\end{array}\right]\} \\
& \text { redundant }
\end{aligned}
$$

lin.indep. redundant

Basis for image $(A):\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\} \quad\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]=2\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]-\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

$\operatorname{ker}(A)=$ line through the orig in $\operatorname{Image}(A)=$ plane through the orig in
2. Let $A=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right], u=\left[\begin{array}{l}1 \\ 2\end{array}\right], v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(a) Explain why u and v form a basis for the plane \mathbf{R}^{2}.
(b) Express $A u$ as a linear combination of u and v. Same for $A v$.
(c) What matrix represents the linear map $x \mapsto A x$ with respect to the u, v basis?

Change of basis matrix: $S=\left[\begin{array}{ll}1 & 1 \\ u & v \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$
a) Since U, v are Rimindep (by inspection) and dim $\mathbb{R}^{2}=2$ we have a basis.
Ah other reason: $\operatorname{det} S=-1 \neq 0$, so S is invertible, fo n, v is a basis.

$$
S^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
1 & -1 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{rr}
-1 & 1 \\
2 & -1
\end{array}\right]
$$

c) $B=S^{-1} A S=\left[\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right] \underbrace{\left[\begin{array}{cc}11 & 7 \\ 10 & 7 \\ \hline\end{array}\right]}_{\text {Au }}=\underbrace{\left[\begin{array}{cc}-1 & 0 \\ 12 & 7\end{array}\right]}$
b)

$$
\begin{aligned}
&-u+12 v=A u \\
& 7 v=A v \\
&-\left[\begin{array}{l}
1 \\
2
\end{array}\right]+12\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
11 \\
10
\end{array}\right] \\
& 7\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
7 \\
7
\end{array}\right]
\end{aligned}
$$

3. Let P be the vector space of polynomials and let $c>0$. Explain why the following subsets H of P are subspaces of P.
(a) $H=\{p(t): p(c)=0\}$.
(b) $H=\left\{p(t): \int_{0}^{c} p(t) d t=0\right\}$.
a) If q is the zero polynomial $(q(t)=0$ for all $t)$, then $q(c)=0$, so q is in H ت Given p_{1}, p_{2} in H and c_{1}, c_{2}-real \#'s

$$
\begin{aligned}
& p_{1}(c)=0, \quad p_{2}(c)=0 \\
&\left(c_{1} p_{1}+c_{2} p_{2}\right)(c)=c_{1} p_{1}(c)+c_{2} p_{2}(c)=c_{1} \cdot 0+c_{2} \cdot 0 \\
&=0
\end{aligned}
$$

So $\quad c_{1} p_{1}+c_{2} p_{2}$ is in H.
$\therefore H$ is a sumbsace of P, \because
b) If q is the zero polynomial, $\int_{0}^{c} q(t) d t=0$ so q is in H - \because
Given p_{1}, p_{2} in H and c_{1}, c_{2}-real \#'s

$$
\begin{gathered}
\int_{0}^{c} p_{1}(t) d t=0, \quad \int_{0}^{c} p_{2}(t) d t=0 \\
\int_{0}^{c}\left(c_{1} p_{1}+c_{2} p_{2}\right)(t) d t=\int_{0}^{c}\left[c_{1} p_{1}(t)+c_{2} p_{2}(t)\right] d t \\
=c_{1} \int_{0}^{c} p_{1}(t) d t+c_{2} \int_{0}^{c} p_{2}(t) d t=c_{1} \cdot 0+c_{2} \cdot 0=0
\end{gathered}
$$

so $c_{1} p_{1}+c_{2} p_{2}$ is in H, bo H is a subspace of $P \ddot{C}$

