1. Let $A=\left[\begin{array}{rr}21 & 28 \\ -15 & -20\end{array}\right]$ and $b=\left[\begin{array}{r}7 \\ -5\end{array}\right]$.
(a) Use Gauss-Jordan elimination to compute the reduced row echelon form of the augmented matrix $[A \mid b]$ and find all solutions to $A x=b$. Show steps.
(b) Can you expect some solutions to $A x=b$ for arbitrary b ? Explain.

$$
\text { a) } \begin{aligned}
& {\left[\begin{array}{ccc}
21 & 28 & \vdots \\
-15 & -20 & \vdots
\end{array}\right] \quad r_{2} \longmapsto r_{2}+\frac{5}{7} r_{1} } \\
& {\left[\begin{array}{ccc}
21 & 28 & 7 \\
0 & 0 & 0
\end{array}\right] \quad r_{1} \longmapsto \frac{1}{21} r_{1} }
\end{aligned}
$$

$\operatorname{pivot}\left[\begin{array}{ccc}(1) & 4 / 3 & 1 / 3 \\ 0 & 0 & 0\end{array}\right]=\operatorname{rref}\left[\begin{array}{l:l}A & b\end{array}\right]$
$\uparrow_{\text {flee variable }}$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-4 / 3 y+\frac{1}{3} \\
y
\end{array}\right]=y\left[\begin{array}{c}
-4 / 3 \\
1
\end{array}\right]+\left[\begin{array}{c}
1 / 3 \\
0
\end{array}\right]
$$

b) We cant expect a solution for arbitrary b It depends on whether we get a piort in the augmentation column in ref $([A \mid B])$

$$
\left[\begin{array}{ccc}
1 & 4 / 3 & * \\
0 & 0 & *
\end{array}\right] \begin{aligned}
& \text { if }=0 \\
& \text { if } \neq 0
\end{aligned} \quad \text { we lave solutions }
$$

2. Assume A and b are as in the above problem.
(a) Express $\operatorname{ker}(A)$ as a span of the least number of vectors by solving $A x=0$.
(b) Describe $\operatorname{ker}(A)$ and the solution set to $A x=b$. Sketch both on the same set of axes.
(c) Express the image of $x \mapsto A x$ as a span of the least number of vectors. Describe and sketch the image.
a) $\operatorname{rref}(A)=\left[\begin{array}{cc}1 & 4 / 3 \\ 0 & 0\end{array}\right]$ (from problem 1) Solution to $A \bar{x}=\overline{0}: \quad\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-4 / 3 \\ y\end{array}\right] \begin{gathered}=\left[\begin{array}{c}-4 / 3 \\ 1\end{array}\right] \\ y\end{gathered}$

$$
\operatorname{ber}(A)=\operatorname{span}\left[\begin{array}{c}
-4 / 3 \\
1
\end{array}\right]
$$

b) Since we have 1 free variable: lines

c) $A \bar{x}=\left[\begin{array}{cc}21 & 28 \\ -15 & -20\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=x\left[\begin{array}{c}21 \\ -15\end{array}\right]+y\left[\begin{array}{c}28 \\ -20\end{array}\right]$

$$
\text { Image }(A)=\operatorname{span}\left(\left[\begin{array}{l}
21 \\
-15
\end{array}\right],\left[\begin{array}{c}
28 \\
-20
\end{array}\right]\right)
$$

$$
=\text { span }\left[\begin{array}{c}
21 \\
-15
\end{array}\right]
$$

Image (A)
3. Let $u=\left[\begin{array}{l}1 \\ 2\end{array}\right], v=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

Suppose L is a line through the origin in \mathbf{R}^{2} and $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is the reflection with respect to L. Suppose $T(u)=v$.
(a) Sketch u and v. Then sketch L on the same set of axes.
(b) Find a unit vector \widehat{u} such that $L=\operatorname{span}(\widehat{u})$.
(c) Find a matrix A such that for all vectors x in \mathbf{R}^{2} we have $T(x)=A x$.

Alt = pick any $\bar{u} \neq 0$ on L, log. $\bar{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then normalize: $|\bar{u}|=\sqrt{2}$, so $\hat{u}=\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right] \ddot{u}$ c) Since L is the main diagonal

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
\therefore \text { Matrix }=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Alt $1 \quad T(\bar{x})=2 \operatorname{proj}_{L} \bar{x}-\bar{x}$

$$
\begin{aligned}
& 2\left[\begin{array}{ll}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=2\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

4. Let $u=\left[\begin{array}{r}-4 \\ 3\end{array}\right], v=\left[\begin{array}{r}3 \\ -2\end{array}\right], b=\left[\begin{array}{l}2 \\ 3\end{array}\right], c=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.

Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear map and we know that $T(u)=b$ and $T(v)=c$. Find a matrix A such that for all vectors x in \mathbf{R}^{2} we have $T(x)=A x$.

$$
\begin{aligned}
& \begin{array}{l}
T(u)=b \rightarrow A u=6
\end{array} \quad A\left[\begin{array}{c}
-4 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
3 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right\} \begin{array}{l}
\text { stack }
\end{array} \\
& A\left[\begin{array}{rc}
-4 & 3 \\
3 & -2
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right] \quad A S=B \\
& \text { Solve: } A=B S^{-1} \\
& \operatorname{det} S=-1 \quad \therefore S^{-1}=-\left[\begin{array}{ll}
-2 & -3 \\
-3 & -4
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
3 & 4
\end{array}\right] \\
& \text { Check: } \int S^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& A=B S^{-1}=\left[\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
16 & 22 \\
21 & 29
\end{array}\right] \\
& \text { Check: }\left[\begin{array}{ll}
16 & 22 \\
21 & 29
\end{array}\right]\left[\begin{array}{c}
-4 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& {\left[\begin{array}{cc}
16 & 22 \\
21 & 29
\end{array}\right]\left[\begin{array}{c}
3 \\
-2
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]}
\end{aligned}
$$

