1. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1\end{array}\right]$.
(a) Find a basis for the kernel of $A$.
(b) Find a basis for the image of $A$ and sketch it.

$$
\operatorname{rref}(A)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{ll}
x_{1}+x_{2}-x_{4}=0 \\
4 & 0 \\
& x_{3}+2 x_{4}=0
\end{array}
$$

b) Basis dv image: $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
$z$


Ga plane
2. Let $A=\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Express $A \mathbf{v}_{1}$ and $A \mathbf{v}_{2}$ as linear combinations of $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$. What matrix represents the linear map $\mathbf{x} \mapsto A \mathbf{x}$ relative to the basis $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$ ?

$$
\begin{aligned}
& \text { Let } S=\left[\begin{array}{ll}
\bar{v}_{1} & \bar{v}_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \\
& \text { Then } S^{-1}=\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right] \\
& S^{-1} A S=\left[\begin{array}{ll}
21 & 31 \\
-4 & -6
\end{array}\right] \\
& A v_{1}=\left[\begin{array}{l}
13 \\
17
\end{array}\right]=21\left[\begin{array}{l}
1 \\
1
\end{array}\right]-4\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& A v_{2}=\left[\begin{array}{l}
19 \\
25
\end{array}\right]=31\left[\begin{array}{l}
1 \\
1
\end{array}\right]-6\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& \underbrace{\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & -1
\end{array}\right]}_{I} \underbrace{0}_{s^{-1}}
\end{aligned}
$$

3. Let $P_{n}$ be the vector space of all real polynomials $p(t)$ with degree $\leq n$ and let $Z_{n}$ be the set of all $p(t)$ in $P_{n}$ such that $p(0)=0$. Prove that
(a) $Z_{n}$ is a vector subspace of $P_{n}$.
(b) $T$ defined by $T(p(t))=\int_{0}^{t} p(s) d s$ is a linear map from $P_{n}$ to $Z_{n+1}$.
a) Let $z(t)$ be the zero polynomial.

Then $z(t)=0$ for any $t$. In particular.
$z(0)=0$, so $z(t)$ is in $Z_{n}$
Suppose $p(t)$ and $q(t)$ are in $Z_{n}, a, b$ are $\# s$.
Then $p(0)=0, q(0)=0$, to

$$
(a p+b q)(0)=a p(0)+b q(0)=a \cdot 0+b-0=0
$$

$\therefore \quad a p+b q$ is in $Z_{n}$
b) If $p$ is in $P_{n}$, then $T_{p}$ is in $Z_{n+1}$
let $p(t)=a_{0}+a_{1} t+\ldots+a_{n} t^{n}$

$$
\begin{aligned}
& \text { Let } p(t)=a_{0}+a_{1} T+\ldots+a_{n} t \\
& T p=\int_{0}^{t} p(s) d s=\left[a_{0} s+a_{1} \frac{s^{2}}{2}+\ldots+a_{n} \frac{s^{n+1}}{n+1}\right]_{0}^{t} \\
& =\underbrace{a_{0} t+\ldots+a_{n} \frac{t^{n+1}}{n+1}-0 \quad \text { slug in zero: in } P_{n+1} \quad \begin{array}{l}
\text { set in zero } \\
\text { sot }
\end{array}}_{\operatorname{deg} \leqslant n+1} .
\end{aligned}
$$

Given $p, q$ in $P_{n}$ and $a, b$ \#s

$$
\begin{aligned}
& T(a p+b q)=\int_{0}^{t}[a p(s)+b q(s)] d s \\
& =\int_{0}^{t} a p(s) d s+\int_{0}^{t} b q(s) d s=a \int_{0}^{t} p(s) d s+b \int_{0}^{t} q(s) d s= \\
& \text { Sumvule coast. unu(tiple rule }=a T_{n}+b T q \cup
\end{aligned}
$$

4. (c) Find the matrix for $T$ with respect to bases $\left[1, t, t^{2}\right]$ for $P_{2}$ and $\left[t, t^{2}, t^{3}\right]$ for $Z_{3}$.
(d) Prove that $T$ is invertible. Find a formula and the matrix for $T^{-1}$.

$$
\begin{aligned}
& T(1)=t=\left(1 \cdot t+(0) t^{2}+(0) \cdot t^{3}\right. \\
& T(t)=t^{2} / 2=\left(0 \cdot t+\left(\frac{1}{2} t^{2}+(0) \cdot t^{3}\right.\right. \\
& T\left(t^{2}\right)=t^{3} / 3
\end{aligned} \quad A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1 / 3
\end{array}\right]
$$

