Midterm 2 / 2016.10.28 / MAT 2233.002 / Linear Algebra

1. Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
.

- (a) Find a basis for the kernel of A.
- (b) Find a basis for the image of A and sketch it.

$$rref(A) = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{x_1 + x_2 - x_4 = 0} \xrightarrow{x_3 + 2x_4 = 0} \xrightarrow{x_1 + x_2} \xrightarrow{x_2 + x_4} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ -2 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_2 & t & x_4 \\ -2 & x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ -2 \\ 1 \end{bmatrix} \xrightarrow{x_4 + x_4} \xrightarrow{x_4} \xrightarrow$$

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

2. Let $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Express $A\mathbf{v}_1$ and $A\mathbf{v}_2$ as linear combinations of \mathbf{v}_1 and \mathbf{v}_2 . What matrix represents the linear map $\mathbf{x} \mapsto A\mathbf{x}$ relative to the basis $[\mathbf{v}_1, \mathbf{v}_2]$?

Let $S = [\overline{v}, \overline{v}_2] = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$	$ \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} $
Then $S^{-1} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} \mathbf{i} & \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{i} & \mathbf{i} \\ 0 & -\mathbf{i} & -1 \\ \mathbf{i} \end{bmatrix}$
	$ \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \end{bmatrix} $
$S'AS = \begin{bmatrix} 21 & 21 \\ -4 & -6 \end{bmatrix}$	$\begin{pmatrix} 1 \circ -1 & 2 \\ 0 & 1 & -1 \end{pmatrix}$
$Av_{1} = \begin{bmatrix} 13\\ 17 \end{bmatrix} = 21 \begin{bmatrix} 1\\ 1 \end{bmatrix} - 4 \begin{bmatrix} 2\\ 1 \end{bmatrix}$	I 5-1
$A_{v_2} = \begin{bmatrix} 19\\25 \end{bmatrix} = 31 \begin{bmatrix} 1\\1 \end{bmatrix} - 6 \begin{bmatrix} 2\\1 \end{bmatrix}$	

3. Let P_n be the vector space of all real polynomials p(t) with degree $\leq n$ and let Z_n be the set of all p(t) in P_n such that p(0) = 0. Prove that

(a)
$$Z_n$$
 is a vector subspace of P_n .
(b) T defined by $T(p(t)) = \int_0^1 p(s) ds$ is a linear map from P_n to Z_{n+1} .
a) Let $2(t)$ be the 2ero polynsmid.
Thun $2(t) = o$ for any t . In productor,
 $2(o) = o$, $s \in 2(t)$ is in Z_n
Suppose $p(t)$ and $q(t)$ are in Z_n , a, b are $\#s$.
Thus $p(o) = o$, $q(o) = o$, $s = (ap + bq)(o) = a p(o) + b q(o) = a \cdot 0 + b \cdot 0 = o$
.: $ap + bq$ is in Z_n ...
b) If p is in P_n , then Tp is in Z_{n+1}
Let $p(t) = a_0 + a_1 t + \dots + a_n t^n$
 $Tp = \int_0^t p(s) ds = [a_0 s + a_1 s^2 + \dots + a_n s^{n+1}]_0^t$
 $= a_0 t + \dots + a_n t^{n+1} - 0$ plug in zeros:
 $deg \le n+1$ so in P_{n+1} so in Z_{n+1}
Given p_1q in P_n and a, b $\#s$
 $T(ap + bq) = \int_0^t (ap(s) + bq(s)) ds$
 $= \int_0^t a p(s) ds + \int_0^t bq(s) ds = a \int_0^t (s) ds = a$

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

4. (c) Find the matrix for T with respect to bases [1, t, t²] for P₂ and [t, t², t³] for Z₃.
(d) Prove that T is invertible. Find a formula and the matrix for T⁻¹.

$$T(1) = t = (1 \cdot t + 0) t^{2} + (0 \cdot t^{3})$$

$$T(t) = \frac{t^{2}}{2} = (0 \cdot t + \frac{1}{2})t^{2} + (0 \cdot t^{3})$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{bmatrix}$$

$$T(t^{2}) = \frac{t^{3}}{3}$$

$$T^{-1}(t^2) = 2t$$

 $T^{-1}(t^2) = 3t^2$
 $T^{-1}(t^2) = 3t^2$