Final exam / 2016.12.12 / MAT 2233.002 / Linear Algebra

$$\left[2x + 4y + 6z = 0\right]$$

1. Consider the linear system $\begin{bmatrix} 2x + 4y + 5z = 6\\ 3x + 4y + 5z = 4\\ 6x + 7y + 9z = 0 \end{bmatrix}$. Use Gauss-Jordan elimination to find all solutions. Show steps. Describe and sketch the solution set. Can you expect some

solutions to this system for arbitrary right-hand-sides? Explain.

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 3 & 4 & 5 & 4 \\ 6 & 7 & 9 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -2 & -4 & 4 \\ 0 & -5 & -9 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & -2 \\ 0 & -5 & -9 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & -2 \\ 0 & -5 & -9 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 1 & -10 \end{bmatrix}$$
Since each of the 3 coefficient columns (cds, 1-3) has a pivot, and pivot, and

- 2. Suppose $T: \mathbf{R}^2 \to \mathbf{R}$ is a linear map and we know its values at some two (column) vectors **u** and **v** in \mathbf{R}^2 that not scalar multiples of one another: $T(\mathbf{u}) = a, T(\mathbf{v}) = b$.
 - (a) Let $S = [\mathbf{u}, \mathbf{v}]$. Explain why S is an invertible matrix. What is $\operatorname{rref}(S)$?
 - (b) Let A be the matrix that represents T. Let B = [a, b]. Explain why AS = B.

Hint: Since $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbf{R}^2 , $A = [A\mathbf{e}_1, A\mathbf{e}_2] = [T(\mathbf{e}_1), T(\mathbf{e}_2)]$, so compute $AS\mathbf{e}_i = T(S\mathbf{e}_i) = \dots$

- 3. Preceding problem continued:
 - (c) Use (a) to solve the matrix equation in (b) for A.

(d) If
$$\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$, $a = 1$ and $b = -2$ use your solution in (c) to find A.

a)
$$S = \begin{bmatrix} \overline{u} & \overline{v} \end{bmatrix} = \begin{bmatrix} u_1 & V_1 \\ u_2 & V_2 \end{bmatrix}$$
 (in coords \ddot{u})
If $\overline{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, then $\overline{u} = 0.\overline{v}$ $\dot{n} \quad \therefore \overline{u} \neq 0$
Gauss-Jordan: Swapping rows, if necessary, assume $u_1 \neq 0$.
 $\begin{bmatrix} 1 & V_1 & U_1 \\ u_2 & V_2 \end{bmatrix} \neq \begin{bmatrix} 1 & V_1 & U_1 \\ 0 & V_2 - U_2 & V_1 \\ u_1 \end{bmatrix}$

$$l \notin V_2 - u_2 \frac{v_1}{u_1} = 0, \quad V_2 = u_2 \frac{v_1}{u_1}, \quad So\left(v_1 = u_1 \frac{v_1}{u_1}\right) := \overline{v} = \frac{v_1}{u_1}, \quad \overline{u}$$

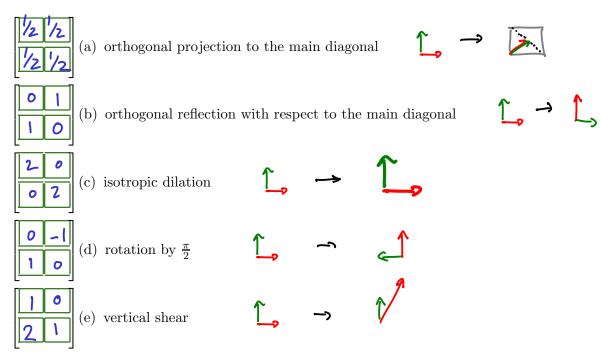
$$:: \quad Ve \text{ have } 2 \text{ pivole} :: \quad Sis \text{ invertide} :: \quad rvef(S) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$b) A = \begin{bmatrix} A\bar{e}_i & A\bar{e}_2 \end{bmatrix} = \begin{bmatrix} T(e_i) & T(e_2) \end{bmatrix} \therefore AS = \begin{bmatrix} AS\bar{e}_i & AS\bar{e}_2 \end{bmatrix} = \\ = \begin{bmatrix} T(S\bar{e}_i) & T(S\bar{e}_2) \end{bmatrix} = \begin{bmatrix} T(\bar{u}) & T(\bar{v}) \end{bmatrix} = \begin{bmatrix} a & b \end{bmatrix} = B$$

c)
$$AS = B$$
 $AS = ^{-1}SS^{-1}$ $A = BS^{-1}$

4)
$$S = \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & -2 \end{bmatrix}$
 $S^{-1} = \begin{bmatrix} -3 & 5/2 \\ 2 & -3/2 \end{bmatrix}$ $A = BS^{-1} = \begin{bmatrix} -7 & \frac{11}{2} \end{bmatrix}$

4. In each part enter a real 2×2 nonzero nonidentity matrix A such that the linear map $\mathbf{x} \mapsto A\mathbf{x}$ is as given.



5. Suppose V is an inner product space and U is a subspace of V. Prove that U^{\perp} is also a subspace of V. Show that any vector in V can be expressed uniquely as a sum of two vectors, one in U and the other in U^{\perp} (this is the main idea behind Gram-Schmidt).

For any
$$\overline{u}$$
 in M , $(0, u) = 0$, so 0 is in M^{\perp}
If \overline{v} , \overline{v} are in M^{\perp} and a, b are $\#s$, then for any u in M^{\perp}
 $\langle a\overline{v} + b\overline{w}, \overline{u} \rangle = a\langle \overline{v}, \overline{u} \rangle + b\langle \overline{w}, \overline{u} \rangle = 0$
 $\therefore U^{\perp}$ is a subspace of V .

Another way to see that U^{\perp} is a subspace of V is to recognize U^{\perp} as ker P, where P is the orthogonal projection to U.

Given
$$\overline{V}$$
 in V , then $P(\overline{v})$ is in U and
 $P(\overline{v} - P(\overline{v})) = P(\overline{v}) - P(P(\overline{v})) = P(\overline{v}) - P(\overline{v}) = 0$
 $\therefore \overline{v} - P(\overline{v})$ is in U^{\perp} , so $\overline{v} = P(\overline{v}) + \overline{v} - P(\overline{v})$. $\overset{"}{\underset{in \ U^{\perp}}{}}$ in U^{\perp}

Given
$$\overline{V}$$
 in \overline{V} , then $P(\overline{v})$ is in \overline{V} and
 $P(\overline{v} - P(\overline{v})) = P(\overline{v}) - P(P(\overline{v})) = P(\overline{v}) - P(\overline{v}) = 0$
 $\therefore \overline{v} - P(\overline{v})$ is in U^{\perp} , so $\overline{v} = P(\overline{v}) + \overline{v} - P(\overline{v})$. $\overset{"}{\underset{in \ U}{}}$ in U^{\perp}

If
$$\overline{v} = \overline{u} + \overline{w}$$
, where \overline{u} is in U and \overline{w} is in U^{\perp} ,
 $P(\overline{v}) = P(\overline{u} + \overline{w}) = P(\overline{u}) + P(\overline{w}) = P(\overline{u}) = \overline{u}$
and $\overline{w} = \overline{v} - \overline{u} = \overline{v} - P(\overline{v})$, so we have uniqueness.

- 6. Let P_2 be the vector space of all real polynomials p(t) with degree ≤ 2 and let $\varepsilon \colon P_2 \to \mathbf{R}$ be the evaluation map: $\varepsilon(p(t)) = p(0)$.
 - (a) Prove that ε is linear. What is the rank of ε ? What is the dimension of ker ε ?
 - (b) Describe ker ε and find an orthonormal basis for it relative to the inner product $\langle p(t), q(t) \rangle = \int_{0}^{1} p(t)q(t) dt.$
- a) If p_1q are in P_2 and a, b are # s, then

$$\mathcal{E}(ap+bq) = (ap+bq)(0) = ap(0) + bq(0) = a\mathcal{E}(p) + b\mathcal{E}(q)$$

Since
$$\varepsilon$$
 is not the zero map, im $(\varepsilon) = \mathbb{R}(\operatorname{qiven} a \operatorname{in} \mathbb{R}, \varepsilon(a) = a)$
:. rle $\varepsilon = 1$:. dim (ker ε) = dim $(\mathbb{P}_2) - 1 = 3 - 1 = 2$

- b) If $p(x) = a_0 + a_1 x + a_2 x^2$, $\Sigma(p) = p(0) = a_0$, so $\Sigma(p) = 0 \iff a_0 = 0$
 - : her & is the set of all polynomials in Pz with O const.term.
- Let $\overline{V_1} = t$, $\overline{V_2} = t^2$. Then $\overline{V_1}$, $\overline{V_2}$ is a basis for ker \mathcal{E} . Gram-Schmidt: $\langle \overline{V_1}, \overline{V_1} \rangle = \int_{1}^{t} t^2 dt = \frac{1}{3}$, so $\overline{U_1} = \frac{1}{|\overline{V_1}|} \overline{V_1} = \sqrt{3} t$ $\overline{V_2}^{\perp} = \overline{V_2} - \langle \overline{V_2}, \overline{U_1} \rangle \overline{U_1} = t^2 - \frac{3}{4} t$ $\overline{J_3} \int_{1}^{t} t^3 dt = \frac{\sqrt{3}}{4}$

$$\langle \bar{J}_{2}, \bar{J}_{2} \rangle = \int_{0}^{1} (t^{2} - \frac{3}{4}t)^{2} dt = \int_{0}^{1} (t^{4} - \frac{3}{2}t^{5} + \frac{9}{16}t^{-}) dt = \frac{1}{80},$$

 $\sum_{n=1}^{\infty} (\overline{u}_{2} = \frac{1}{|\overline{v}_{2}|} \overline{v}_{2}^{1} = \sqrt{80}(t^{3} - \frac{3}{4}t) = 4\sqrt{5}t^{2} - 3\sqrt{5}t$

7. Let
$$A = \begin{bmatrix} 2 & 4 & 0 & 0 \\ 6 & 7 & 2 & 0 \\ 3 & 0 & 0 & 4 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
 and define $T : \mathbf{R}^4 \to \mathbf{R}^4$ by $T(\mathbf{x}) = A\mathbf{x}$. Compute the determinant

of A (show work). What can you conclude about T from your answer?

$$\frac{\text{Laglace Expansion}(\text{JOW I}):}{\det A = 2 \det \begin{pmatrix} 720\\ 004\\ 210 \end{pmatrix} - 4 \det \begin{pmatrix} 620\\ 304\\ 304 \end{pmatrix}}$$

= $2\left(-4 \cdot \det \begin{bmatrix} 72\\ 21 \end{pmatrix} - 4\left(6 \det \begin{bmatrix} 04\\ 10 \end{bmatrix} - 2 \det \begin{bmatrix} 3 & 4\\ 3 & 0 \end{bmatrix}\right)$
= $-24 - 4\left(-24 + 24\right) = -24$
Since $\det A \neq 0$, T is invertible.
T expands 4 dimensional content by a factor of 24
and reverses orientation.

8. Let
$$A = \begin{bmatrix} -7 & 10 \\ -5 & 8 \end{bmatrix}$$
.

- (a) Find the eigenvalues of A and corresponding eigenvectors. Let S be the matrix whose columns are eigenvectors of A. Compute AS. Verify that $S^{-1}AS$ is diagonal with entries the eigenvalues of A.
- (b) Sketch the eigenspaces and give a geometrical description of the linear map $\mathbf{x} \mapsto A\mathbf{x}$.

a) Let
$$(A - \lambda I) = Let \begin{bmatrix} -7 - \lambda & 10 \\ -S & 8 - \lambda \end{bmatrix} = (-7 - \lambda)(8 - \lambda) + SO$$

$$= \lambda^{2} - \lambda - 6 = (\lambda - 3)(\lambda + 2), \text{ so eigenvals.} : \begin{bmatrix} \lambda = 3, -2 \\ \lambda = 3, -2 \end{bmatrix}$$
rref $(A - 3I) = rref \begin{bmatrix} -10 & 10 \\ -S & S \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \xrightarrow{x-y=0}$
so let $V_{i} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
rref $(A + 2I) = rref \begin{bmatrix} -5 & 10 \\ -S & 10 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \xrightarrow{x-2y=0}$
so let $V_{2} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

$$S = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \quad AS = \begin{bmatrix} 3 & -4 \\ 3 & -2 \end{bmatrix}$$

$$S^{-1} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}, \quad S^{-1}AS = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \xrightarrow{x-2y=0}$$
b) $A = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}, \quad A = \begin{bmatrix} 3 & -4 \\ 3 & -2 \end{bmatrix}$

A délates by
$$S$$
 along the main d'agonal
 -2 and bilates by 2 and flips along
the line $y=\frac{1}{2}x$