Advanced Engineering Mathematics 畨 Math 450
Exam 1 * Winter 2001 粦 Instructor: D. Gokhman

Name:
Please show all work.

1. (20 pts.) Let $f(x)=2$ on the interval $(0,2 \pi)$. Let g be the odd periodic extension of f.
(a) Sketch a few periods of g.
(b) Find the sine Fourier series for g.
(c) On the same sketch as above, graph the first sine Fourier approximant.
(d) Express the above Fourier series in complex exponential form.
(e) What will the sine Fourier series converge to at $x=0, \pi, 2 \pi, 3 \pi$?
2. (20 pts.) Let $f(x)= \begin{cases}2 & \text { for }-1<x<1 \\ 0 & \text { otherwise. }\end{cases}$
(a) Find the Fourier transform \widehat{f} of f and show that \widehat{f} is real valued.
(b) Sketch the energy spectrum $|\widehat{f}|^{2}$. Which range of frequency (low, medium or high) pack the most energy?
3. (20 pts.) Find the general solution of the partial differential equation $u_{x}+u_{y}=(x-2 y) u$.
4. (20 pts.) Find the vertical deflection $u(x, t), 0<x<2$ of a taut string fixed at both ends with initial position 0 and initial velocity $0.01 \sin (\pi x)$.

1	2	3	4	total (80)	$\%$

