Name: _

Please show all work. If you use a theorem, name it or state it.

- 1. Let $A = \begin{bmatrix} 6 & -5 \\ 13 & -10 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
 - (a) Find e^{At} .
 - (b) Solve $\mathbf{x}'(t) = A\mathbf{x}, \mathbf{x}(0) = \mathbf{u}$.
 - (c) Sketch $\mathbf{x}(t)$.
- 2. Same as above with $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.
- 3. Find the operator norm ||A|| for A in the preceding two problems.
- 4. Prove the famous inequality for the operator norm $||ST|| \leq ||S|| ||T||$.
- 5. Prove that matrix exponentiation preserves similarity. In other words, if A and B are similar, then so are e^A and e^B .

Hint: A and B are similar means there is an invertible P such that AP = PB (or equivalently $A = PBP^{-1}$ or $B = P^{-1}AP$).

1	2	3	4	5	total (50)