Name: \qquad
Please show all work and justify your answers.

1. Characterize all finite subgroups of the multiplicative group $\mathbf{C} \backslash\{0\}$. Prove your assertion.
2. Find the sizes of conjugacy classes for S_{4} and verify the class equation.
3. Let $p(x)=x^{2}+3 x+1, F=\mathbf{Q}[x] /\langle p\rangle$, and $u=x+\langle p\rangle \in F$. Express u^{3} and $(1+u)^{-1}$ as linear combinations of 1 and u.
4. In the above problem find the minimal polynomials of u^{3} and $(1+u)^{-1}$ over \mathbf{Q}.
5. Find an irreducible polynomial in $\mathbf{Q}[x]$ whose Galois group over \mathbf{Q} is isomorphic to the dihedral group Δ_{4}. Prove your assertion.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade:						$\%$

