Name: $\qquad$
Please show all work and justify your answers.
Let $K$ denote a commutative ring with $\operatorname{char}(K) \neq 2$.

1. Use universality of tensor product of $K$-modules to show $A \otimes B \cong B \otimes A$.
2. Let $d=\operatorname{gcd}(m, n)$. Prove $[x, y] \mapsto x y$ defines a universal $\mathbf{Z}$-bilinear map $\mathbf{Z}_{m} \times \mathbf{Z}_{n} \rightarrow \mathbf{Z}_{d}$.
3. Suppose $F$ is free $K$-module on 2 generators. Prove from first principles that the set $\operatorname{Alt}_{2}(F)$ of all bilinear alternating maps $F \times F \rightarrow K$ is a cyclic $K$-module.
4. Let $M$ be a $K$-module. Illustrate with a concrete example that the functor ${ }_{-} \otimes M$ is not left exact.
5. Compute the following tensor products over $\mathbf{Z}$. Briefly explain your answers.
(a) $\mathbf{Z}^{2} \otimes \mathbf{Z}^{4} \cong$ ?
(b) $\mathbf{Z}^{2} \otimes \mathbf{Z}_{4} \cong$ ?
(c) $\mathbf{Z}_{2} \otimes \mathbf{Z}_{4} \cong$ ?
(d) $\mathbf{Z}^{3} \otimes \mathbf{Q} \cong$ ?
(e) $\mathbf{Z}_{3} \otimes \mathbf{Q} \cong$ ?

| 1 | 2 | 3 | 4 | 5 | total (50) |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

