Name: _

Please show all work and justify your answers.

Let K denote a commutative ring with $char(K) \neq 2$.

- 1. Use universality of tensor product of K-modules to show $A \otimes B \cong B \otimes A$.
- 2. Let $d = \gcd(m, n)$. Prove $[x, y] \mapsto xy$ defines a universal **Z**-bilinear map $\mathbf{Z}_m \times \mathbf{Z}_n \to \mathbf{Z}_d$.
- 3. Suppose F is free K-module on 2 generators. Prove from first principles that the set $Alt_2(F)$ of all bilinear alternating maps $F \times F \to K$ is a cyclic K-module.
- 4. Let M be a K-module. Illustrate with a concrete example that the functor $_\otimes M$ is not left exact.
- 5. Compute the following tensor products over Z. Briefly explain your answers.
 - (a) $\mathbf{Z}^2 \otimes \mathbf{Z}^4 \cong ?$ (b) $\mathbf{Z}^2 \otimes \mathbf{Z}_4 \cong ?$ (c) $\mathbf{Z}_2 \otimes \mathbf{Z}_4 \cong ?$ (d) $\mathbf{Z}^3 \otimes \mathbf{Q} \cong ?$ (e) $\mathbf{Z}_3 \otimes \mathbf{Q} \cong ?$

1	2	3	4	5	total (50)