Name: _

Please show all work and justify your answers.

- 1. Prove that for abelian groups $A \otimes (B_1 \oplus B_2) \cong (A \otimes B_1) \oplus (A \otimes B_2)$.
- 2. Suppose F is free **R**-module on 3 generators. Prove $Alt_2(F)$ is a free **R**-module.
- 3. Suppose F is a field and G is a finite multiplicative subgroup of $F \setminus \{0\}$. Prove G is cyclic.
- 4. Find the sizes of conjugacy classes for S_5 and verify the class equation.
- 5. Same question, but for $GL(2, \mathbb{Z}_2)$.
- 6. Let $p(x) = x^2 + 5x + 1$, $F = \mathbf{Q}[x]/\langle p \rangle$, and $u = x + \langle p \rangle \in F$. Express u^3 and $(1 u)^{-1}$ as linear combinations of 1 and u.
- 7. In the above problem find the minimal polynomials of u^3 and $(1-u)^{-1}$ over **Q**.
- 8. Find an irreducible polynomial in $\mathbf{Q}[x]$ whose Galois group over \mathbf{Q} is isomorphic to S_3 . Prove your assertion.

1	2	3	4	5	6	7	8	total (80)
								%