Name: ____

Please show all work and justify your answers.

Let K denote a commutative ring.

- 1. Give an example of a submodule of a free module that is not free. Prove your assertion.
- 2. Let S be the set of all subgroups of the symmetric group S_3 . Define $f: S_3 \times S \to S$ by $f(\sigma, S) = \sigma S \sigma^{-1}$.
 - (a) Prove that f is a group action.
 - (b) Compute the orbits of the subgroup H generated by the involution (1, 2) and of the alternating group A_3 .
 - (c) What are the normalizers $N_{S_3}(H)$ and $N_{S_3}(A_3)$? Prove your assertions.
- 3. The dihedral group Δ_n is generated by a and d modulo relations $a^n = d^2 = 1$, $da = a^{-1}d$.
 - (a) Prove that the commutator subgroup Δ'_n is cyclic.
 - (b) Find the composition factors of Δ_5 .
- 4. Suppose F is a field of characteristic ∞ and $u \in F$ satisfies $u^2 2u + 3 = 0$. Let $s = \frac{1}{1 u}$.
 - (a) Express s as a linear combination of 1 and u.
 - (b) Find a polynomial with rational coefficients satisfied by s.

1	2	3	4	total (40)	%

Prelim. course grade: %