Name: _

Please show all work and justify your answers.

Let K denote a commutative ring.

- 1. Suppose F is free K-module on 2 generators. Prove from first principles that the set $\operatorname{Alt}_2 F$ of all bilinear alternating maps $F^2 \to K$ is a free cyclic K-module.
- 2. Let F be a vector space (a free module) over a field K and $L: F \to F$ a linear map (a K-module morphism). A scalar λ is called an *eigenvalue* of L whenever the map $\lambda I L$, fails to be bijective $(I: F \to F$ denotes the identity map, so λI is the dilation by λ). Assuming F is finitely generated, prove that the set of all eigenvalues of L is finite.

Hint: You may want to represent linear transformations by matrices.

- 3. Let A be a K-module and define $f: A \times K^2 \to A^2$ by $f(a, (\kappa, \lambda)) = (\kappa a, \lambda a)$.
 - (a) Prove that f is bilinear.
 - (b) Prove that f is universal among bilinear maps on $A \times K^2$ by showing that for any bilinear $g: A \times K^2 \to C$ there exists unique linear $g': A^2 \to C$ with $g = g' \circ f$. Hint: Write (a,b) = (a,0) + (0,b). What elements does f take to the two summands?
- 4. Compute the following tensor products over Z.
 - (a) $\mathbf{Z}^2 \otimes \mathbf{Z}^3 \cong ?$
 - (b) $\mathbf{Z}^2 \otimes \mathbf{Z}_3 \cong ?$
 - (c) $\mathbf{Z}_2 \otimes \mathbf{Z}_3 \cong ?$
 - (d) $\mathbf{Z}^{\overline{2}} \otimes \mathbf{Q} \cong ?$
 - (e) $\mathbf{Z}_2 \otimes \mathbf{Q} \cong ?$

1	2	3	4	total (40)	%

Prelim. course grade: %