Name: _

Please show all work and justify your answers.

Let K denote a commutative ring.

- 1. Suppose F is free K-module on 3 generators. Prove from first principles that the set $\operatorname{Alt}_2 F$ of all bilinear alternating maps $F^2 \to K$ is a free cyclic K-module.
- 2. Let A be a K-module and define $f: A \times K^2 \to A^2$ by $f(a, (\kappa, \lambda)) = (\kappa a, \lambda a)$.
 - (a) Prove that f is bilinear.
 - (b) Prove that f is universal among bilinear maps on $A \times K^2$ by showing that for any bilinear $g: A \times K^2 \to C$ there exists unique linear $g': A^2 \to C$ with $g = g' \circ f$. Hint: Write (a, b) = (a, 0) + (0, b). What elements does f take to the two summands?
- 3. Prove that
 - (a) $\mathbf{Z}_2 \otimes_{\mathbf{Z}} \mathbf{Z}_5 \cong \mathbf{0}$
 - (b) $\mathbf{Z}^2 \otimes_{\mathbf{Z}} \mathbf{Q} \cong \mathbf{Q}^2$
- 4. Suppose $A \xrightarrow{f} B \xrightarrow{g} C$ is a short exact sequence of K-modules and C is free. Prove that $B \cong A \oplus C$.
- 5. Let $K = \mathbf{Z}[x]$. Let $I = \{p \in K: p(0) \text{ is even}\}$. Prove that
 - (a) I is an ideal of K
 - (b) I is not a free K-module
- 6. (a) Prove that the symmetric group S₃ is solvable.
 (b) Prove that S₃ is not nilpotent.
- 7. Suppose G is a group of order n such that for each prime divisor p of n there is only one Sylow p-group in G. What can you conclude about the structure of G?
- 8. Suppose F is a field of characteristic ∞ and $u \in F$ satisfies $u^2 + 3u 1 = 0$. Let $s = \frac{1}{1 u}$.
 - (a) Express s as a linear combination of 1 and u.
 - (b) Find a polynomial with rational coefficients satisfied by s.

1	2	3	4	5	6	7	8	total (80)
								%