Name: \qquad
Please show all work and justify your answers.
Let K denote a commutative ring.

1. Suppose F is free K-module on 3 generators. Prove from first principles that the set Alt $_{2} F$ of all bilinear alternating maps $F^{2} \rightarrow K$ is a free cyclic K-module.
2. Let A be a K-module and define $f: A \times K^{2} \rightarrow A^{2}$ by $f(a,(\kappa, \lambda))=(\kappa a, \lambda a)$.
(a) Prove that f is bilinear.
(b) Prove that f is universal among bilinear maps on $A \times K^{2}$ by showing that for any bilinear $g: A \times K^{2} \rightarrow C$ there exists unique linear $g^{\prime}: A^{2} \rightarrow C$ with $g=g^{\prime} \circ f$. Hint: Write $(a, b)=(a, 0)+(0, b)$. What elements does f take to the two summands?
3. Prove that
(a) $\mathbf{Z}_{2} \otimes \mathbf{Z} \mathbf{Z}_{5} \cong 0$
(b) $\mathbf{Z}^{2} \otimes \mathbf{Z} \mathbf{Q} \cong \mathbf{Q}^{2}$
4. Suppose $A \xrightarrow{f} B \xrightarrow{g} C$ is a short exact sequence of K-modules and C is free. Prove that $B \cong A \oplus C$.
5. Let $K=\mathbf{Z}[x]$. Let $I=\{p \in K: p(0)$ is even $\}$. Prove that
(a) I is an ideal of K
(b) I is not a free K-module
6. (a) Prove that the symmetric group S_{3} is solvable.
(b) Prove that S_{3} is not nilpotent.
7. Suppose G is a group of order n such that for each prime divisor p of n there is only one Sylow p-group in G. What can you conclude about the structure of G ?
8. Suppose F is a field of characterstic ∞ and $u \in F$ satisfies $u^{2}+3 u-1=0$. Let $s=\frac{1}{1-u}$.
(a) Express s as a linear combination of 1 and u.
(b) Find a polynomial with rational coefficients satisfied by s.

1	2	3	4	5	6	7	8	total (80)
$\%$								

