Algebra II, mat 5313

Final, May 6, 1996
Instructor: D. Gokhman
Name: \qquad Pseudonym: \qquad

1. (20 pts.) Suppose R and S are rings and $f: R \rightarrow S$ is a ring homomorphism.
(a) Show that ker $f=\{r \in R: f(r)=0\}$ is a two-sided ideal of R.
(b) Show that if f is onto and I is a left ideal of R,
then $f(I)=\{s \in S: \exists r \in R f(r)=s\}$ is a left ideal of S.
2. (50 pts.) Suppose R is a commutative ring with 1 . For each of the following subsets of R prove or disprove that it is closed under multiplication:
(a) The set of units of R.
(b) The set of nonunits of R.
(c) The set of nonzero elements of R.
(d) A prime ideal.
(e) The complement of a prime ideal.
3. (60 pts.) Let R be the ring of all continuous real valued functions of a real variable, i.e. $R=\{f: \mathbf{R} \rightarrow \mathbf{R}: f$ is continuous $\}$, where addition and multiplication of functions are pointwise, i.e. $(f+g)(x)=f(x)+g(x)$ and $(f \cdot g)(x)=f(x) \cdot g(x)$.
Given a subset of the real line $V \subseteq \mathbf{R}$ define $I(V)$ to be the set of all continuous functions that vanish on V, i.e. $I(V)=\{f \in R: \forall x \in V f(x)=0\}$.
(a) Which functions are the units of R ?
(b) Prove or disprove: R is an integral domain.
(c) Show that if $V \subseteq \mathbf{R}$, then $I(V)$ is an ideal of R.
(d) What are $I(\varnothing)$ and $I(\mathbf{R})$?
(e) Show that if $a \in \mathbf{R}$, then $I(\{a\})$ is a prime ideal of R.
(f) Show that if $a, b \in \mathbf{R}$ and $a \neq b$, then $I(\{a, b\})$ is not a prime ideal of R.
4. (40 pts.) True/false questions. Justification (proof or counterexample) required.

T F (a) Every finite integral domain is a field.
T F (b) If R is an integral domain and $S=R \backslash\{0\}$, then $S^{-1} R$ is a field.
T F (c) Every ideal of \mathbf{Z} is a principal ideal.
T F (d) Every ideal of the polynomial ring $\mathbf{Z}[x]$ is a principal ideal.

1		2					3					Total						
a	b	a	b	c	d	e	a	b	c	d	e	f	a	b	c	d	(170)	$\%$

