Algebra II, MAT 5313 Final, May 6, 1996 Instructor: D. Gokhman

Name: ____

Pseudonym: _

- 1. (20 pts.) Suppose R and S are rings and $f: R \rightarrow S$ is a ring homomorphism.
 - (a) Show that ker $f = \{r \in R: f(r) = 0\}$ is a two-sided ideal of R.
 - (b) Show that if f is onto and I is a left ideal of R,
 - then $f(I) = \{s \in S : \exists r \in R \ f(r) = s\}$ is a left ideal of S.
- 2. (50 pts.) Suppose R is a commutative ring with 1. For each of the following subsets of R prove or disprove that it is closed under multiplication:
 - (a) The set of units of R.
 - (b) The set of nonunits of R.
 - (c) The set of nonzero elements of R.
 - (d) A prime ideal.
 - (e) The complement of a prime ideal.
- 3. (60 pts.) Let R be the ring of all continuous real valued functions of a real variable, i.e. $R = \{f : \mathbf{R} \to \mathbf{R} : f \text{ is continuous}\}$, where addition and multiplication of functions are pointwise, i.e. (f+g)(x) = f(x) + g(x) and $(f \cdot g)(x) = f(x) \cdot g(x)$.

Given a subset of the real line $V \subseteq \mathbf{R}$ define I(V) to be the set of all continuous functions that vanish on V, i.e. $I(V) = \{f \in R: \forall x \in V \ f(x) = 0\}.$

- (a) Which functions are the units of R?
- (b) Prove or disprove: R is an integral domain.
- (c) Show that if $V \subseteq \mathbf{R}$, then I(V) is an ideal of R.
- (d) What are $I(\emptyset)$ and $I(\mathbf{R})$?
- (e) Show that if $a \in \mathbf{R}$, then $I(\{a\})$ is a prime ideal of R.
- (f) Show that if $a, b \in \mathbf{R}$ and $a \neq b$, then $I(\{a, b\})$ is not a prime ideal of R.
- 4. (40 pts.) True/false questions. Justification (proof or counterexample) required.
- T F (a) Every finite integral domain is a field.
- T F (b) If R is an integral domain and $S = R \setminus \{0\}$, then $S^{-1}R$ is a field.
- T F (c) Every ideal of \mathbf{Z} is a principal ideal.
- T F (d) Every ideal of the polynomial ring $\mathbf{Z}[x]$ is a principal ideal.

-	1	2				3						4				Total		
а	b	а	b	С	d	е	а	b	С	d	е	f	а	b	С	d	(170)	%