Name: _

Please show all work and justify your answers.

- 1. Show that the exponential map $t \mapsto \exp(it)$ from **R** to S^1 gives a universal cover of S^1 .
- 2. Show that if two pointed topological spaces are homotopically equivalent, then their fundamental groups are isomorphic.
- 3. Verify directly that the 1-form $\omega = y^2 z^4 dx + 2xyz^4 dy + 4xy^2 z^3 dz$ is closed. Then show that it is exact by finding a function whose differential is ω .
- 4. Suppose U is a non-empty open subset of C. Show that $f: U \to C$ is holomorphic if and only if f(z) dz is a closed 1-form.
- 5. Represent the sphere as a simplicial complex and compute its homology groups.

1	2	3	4	5	total (50)	%