General Topology II, mat 5253

Midterm, March 10, 1997
Instructor: D. Gokhman

Name:

Show all work. Box your answers.
Let I denote the closed unit interval in \mathbf{R} and S^{n} denote the unit sphere in \mathbf{R}^{n+1}.

1. (25 pts.) Let $p: \mathbf{R} \rightarrow S^{1} \subset \mathbf{C}$ be the map $p(x)=e^{2 \pi i x}$.
(a) Prove that $p:(\mathbf{R},+) \rightarrow\left(S^{1}, \cdot\right)$ is a group homomorphism and that $\operatorname{ker} p=\mathbf{Z}$.
(b) Let $a \in \mathbf{R}$ and define $f: \mathbf{R} \rightarrow \mathbf{R}$ by $f(x)=x+a$. For which a is f fibre preserving for p, i.e. $p \circ f=p$?
(c) Let J be an open interval in \mathbf{R}. What is the maximum length of J such that $p^{-1}(p(J))$ is not connected?
(d) Consider the path $\sigma: I \rightarrow S^{1}$ given by $\sigma(s)=e^{-4 \pi i s}$. Show that σ is a loop with $\sigma(0)=\sigma(1)=1$. Sketch this loop.
(e) For the same σ as above, find a path $\sigma^{\prime}: I \rightarrow \mathbf{R}$ such that $p \circ \sigma^{\prime}=\sigma$ and $\sigma^{\prime}(0)=0$. What is $\sigma^{\prime}(1)$?
2. (30 pts.) Prove the following statements.
(a) X is contractible $\Rightarrow X$ is path connected.
(b) $U \subseteq \mathbf{R}^{n}, U$ is convex $\Rightarrow U$ is contractible.
(c) $\mathbf{R}^{n} \backslash\{0\}$ is homotopy equivalent to S^{n-1}.

1	2	3	4	5	total (55)	$\%$

