General Topology II, MAT 5253 Midterm, March 10, 1997 Instructor: D. Gokhman

Name: _

Show all work. Box your answers.

Let I denote the closed unit interval in \mathbf{R} and S^n denote the unit sphere in \mathbf{R}^{n+1} .

- 1. (25 pts.) Let $p: \mathbf{R} \to S^1 \subset \mathbf{C}$ be the map $p(x) = e^{2\pi i x}$.
 - (a) Prove that $p: (\mathbf{R}, +) \to (S^1, \cdot)$ is a group homomorphism and that ker $p = \mathbf{Z}$.
 - (b) Let $a \in \mathbf{R}$ and define $f : \mathbf{R} \to \mathbf{R}$ by f(x) = x + a. For which a is f fibre preserving for p, i.e. $p \circ f = p$?
 - (c) Let J be an open interval in **R**. What is the maximum length of J such that $p^{-1}(p(J))$ is not connected?
 - (d) Consider the path $\sigma: I \to S^1$ given by $\sigma(s) = e^{-4\pi i s}$. Show that σ is a loop with $\sigma(0) = \sigma(1) = 1$. Sketch this loop.
 - (e) For the same σ as above, find a path $\sigma' : I \to \mathbf{R}$ such that $p \circ \sigma' = \sigma$ and $\sigma'(0) = 0$. What is $\sigma'(1)$?
- 2. (30 pts.) Prove the following statements.
 - (a) X is contractible \Rightarrow X is path connected.
 - (b) $U \subseteq \mathbf{R}^n$, U is convex $\Rightarrow U$ is contractible.
 - (c) $\mathbf{R}^n \setminus \{0\}$ is homotopy equivalent to S^{n-1} .

1	2	3	4	5	total (55)	%