General Topology I, MAT 5243 Midterm, October 22, 1996 Instructor: D. Gokhman

Name: _

Show all work. Box your answers.

- 1. Suppose X and Y are topological space and $f: X \to Y$ is a function.
 - (a) Prove that if the topology of Y is indiscrete, then f is continuous.
 - (b) Prove that if the topology of X is discrete, then f is continuous.
- 2. Suppose X, Y and Z are topological spaces, and $f: Z \to X$ and $g: Z \to Y$ are continuous functions. Let $\varphi: Z \to X \times Y$ be given by $\varphi(z) = (f(z), g(z))$. Prove that φ is continuous.
- 3. Suppose X is a topological space, I is a set, and $A_i \subseteq X$ for each $i \in I$.
 - (a) Show that $\bigcup_{i \in I} \overline{A_i} \subseteq \overline{\bigcup_{i \in I} A_i}$.
 - (b) Construct an example for part (a) with strict containment.
- 4. True or false questions, circle your choice. No justification required. Throughout this question, let X and Y be topological spaces.
- T F (a) If $f: X \to Y$ and $g: Y \to X$ are continuous, then $f \circ g: Y \to Y$ is continuous.
- T F (b) If A is open in X, then $\overline{A} \neq A$.
- T F (c) If $A \subseteq X$, $A \neq \emptyset$, and $A \neq X$, then the boundary $\partial A \neq \emptyset$.
- T F (d) If $Y \subseteq X$ and X is a metric space, then the metric topology on Y is the same as the subspace topology on Y.

1	2	3	4	total