Midterm 2 / 2003.4.23 / Theory of Functions of a Complex Variable II / MAT 5233.001

Name: _

Please show all work. If you use a known result in your proof, state the result in full.

- 1. (10 pts.) Suppose f is entire. What are all the possibilities for the range of e^{f} ? Prove your assertion.
- 2. (10 pts.) Suppose
 - (i) $\Omega \subseteq \mathbf{C}$ is a domain (open and connected subset of \mathbf{C}) and
 - (ii) $\lambda: \Omega \to \mathbf{R}$ is twice differentiable and satisfies $\Delta^c(\ln \lambda) \ge \lambda$ (recall that Δ^c is defined as one fourth of the Laplacian Δ).

Show that if $f: D^* \to \Omega$ is analytic on the punctured unit disc $D^* = \{z \in \mathbb{C} : 0 < |z| < 1\}$, then

$$|f'(z)|^2 \lambda(f(z)) \le \frac{1}{2(|z|\ln|z|)^2}, \text{ for } z \in D^*.$$

[You may use Ex. 222.1 which is a consequence of Ahlfors's version of the Schwartz lemma saying that if $g: H \to \Omega$ is analytic on the upper half plane $H = \{z \in \mathbb{C}: \Im[z] > 0\}$, then

$$|g'(z)|^2 \lambda(g(z)) \le \frac{1}{2 (\Im[z])^2}, \text{ for } z \in H.$$

Hint: modify the exponential function to map H to D^* .]

- 3. (10 pts.) Let $H = \{z \in \mathbb{C} : \Im[z] > 0\}$ denote the upper half plane. Define g(x) = 1 for x > 0 and g(x) = 2 for x < 0.
 - (a) Find a harmonic $\Phi: H \to \mathbf{R}$ such that $\Phi(x, 0) = g(x)$.
 - (b) Find a harmonic $\Psi: H \to \mathbf{R}$ such that $F(x+iy) = \Phi(x,y) + i\Psi(x,y)$ is analytic.
 - (c) Sketch a few curves of constant Φ and Ψ (so-called equipotential and flow lines).

Cauchy-Riemann equations:

 $\begin{aligned} f(x+iy) &= u+iv: \quad u_x = v_y, \quad v_x = -u_y \\ f(re^{i\theta}) &= u+iv: \quad ru_r = v_\theta, \quad rv_r = -u_\theta \\ f(x+iy) &= \rho e^{i\psi}: \quad \rho_x = \rho \psi_y, \quad \rho_y = -\rho \psi_x \\ f(re^{i\theta}) &= \rho e^{i\psi}: \quad r\rho_r = \rho \psi_\theta, \quad \rho_\theta = -r\rho \psi_r \end{aligned}$

1	2	3	total (30)
			%

Prelim. course grade: %