Name: \qquad

Please show all work. If you use a known result in your proof, state the result in full.

1. (10 pts.) Suppose f is entire. What are all the possibilities for the range of e^{f} ? Prove your assertion.
2. (10 pts.) Suppose
(i) $\Omega \subseteq \mathbf{C}$ is a domain (open and connected subset of \mathbf{C}) and
(ii) $\lambda: \Omega \rightarrow \mathbf{R}$ is twice differentiable and satisfies $\Delta^{c}(\ln \lambda) \geq \lambda$
(recall that Δ^{c} is defined as one fourth of the Laplacian Δ).
Show that if $f: D^{*} \rightarrow \Omega$ is analytic on the punctured unit disc $D^{*}=\{z \in \mathbf{C}: 0<|z|<1\}$, then

$$
\left|f^{\prime}(z)\right|^{2} \lambda(f(z)) \leq \frac{1}{2(|z| \ln |z|)^{2}}, \quad \text { for } z \in D^{*}
$$

[You may use Ex. 222.1 which is a consequence of Ahlfors's version of the Schwartz lemma saying that if $g: H \rightarrow \Omega$ is analytic on the upper half plane $H=\{z \in \mathbf{C}: \mathfrak{I}[z]>0\}$, then

$$
\left|g^{\prime}(z)\right|^{2} \lambda(g(z)) \leq \frac{1}{2(\mathfrak{I}[z])^{2}}, \quad \text { for } z \in H
$$

Hint: modify the exponential function to map H to D^{*}.]
3. (10 pts .) Let $H=\{z \in \mathbf{C}: \mathfrak{I}[z]>0\}$ denote the upper half plane.

Define $g(x)=1$ for $x>0$ and $g(x)=2$ for $x<0$.
(a) Find a harmonic Φ : $H \rightarrow \mathbf{R}$ such that $\Phi(x, 0)=g(x)$.
(b) Find a harmonic $\Psi: H \rightarrow \mathbf{R}$ such that $F(x+i y)=\Phi(x, y)+i \Psi(x, y)$ is analytic.
(c) Sketch a few curves of constant Φ and Ψ (so-called equipotential and flow lines).

Cauchy-Riemann equations:
$f(x+i y)=u+i v: \quad u_{x}=v_{y}, \quad v_{x}=-u_{y}$
$f\left(r e^{i \theta}\right)=u+i v: \quad r u_{r}=v_{\theta}, \quad r v_{r}=-u_{\theta}$
$f(x+i y)=\rho e^{i \psi}: \quad \rho_{x}=\rho \psi_{y}, \quad \rho_{y}=-\rho \psi_{x}$
$f\left(r e^{i \theta}\right)=\rho e^{i \psi}: \quad r \rho_{r}=\rho \psi_{\theta}, \quad \rho_{\theta}=-r \rho \psi_{r}$

