Name: \qquad

Please show all work and justify answers. If you use a known result, state the result in full.

1. (10 pts.) Suppose Ω is a domain in the complex plane and f_{n} is a sequence in $\mathcal{H}(\Omega)$ such that $f_{n} \rightarrow f$ uniformly on compact subsets of Ω, The Weierstrass theorem says that in this case $f \in \mathcal{H}(\Omega)$. Prove the second part of the theorem which says that for any k the k-th derivatives $f_{n}^{(k)} \rightarrow f^{(k)}$ uniformly on compact subsets of Ω.
2. (10 pts.) Find the first three nontrivial terms of the Laurent series at the origin of

$$
\begin{array}{ll}
\text { (a) } f(z)=\frac{\cos z}{z-z^{3}} & \text { (b) } f(z)=\cot z
\end{array}
$$

3. (10 pts.) For each of the following covering maps p, how many elements are there in each stalk $p^{-1}(x)$? Compute and sketch $p^{-1}(1)$. Illustrate that p is indeed a covering map by sketching an evenly covered neighborhood of 1 and its preimage under p.

$$
\text { (a) } p(z)=z^{4}: \mathbf{C} \backslash\{0\} \rightarrow \mathbf{C} \backslash\{0\} \quad \text { (b) } p(z)=\sin z: \mathbf{C} \rightarrow \mathbf{C}
$$

4. (10 pts.) Suppose f is entire and never zero. What are all the possibilities for the range of $1 / f$? Prove your assertion.
5. (10 pts.) Suppose λ is a real valued twice differentiable function on a domain $\Omega \subseteq \mathbf{C}$ such that $\frac{1}{4} \Delta(\ln \lambda) \geq \lambda$. Show that if $f: H \rightarrow \Omega$ is analytic on the right half plane $H=\{z \in \mathbf{C}: \mathfrak{R}[z]>0\}$, then

$$
\left|f^{\prime}(z)\right|^{2} \lambda(f(z)) \leq \frac{1}{2(\mathfrak{R}[z])^{2}} \quad \text { for } z \in H
$$

[You may use Ahlfors's version of the Schwartz lemma saying that if $g: D \rightarrow \Omega$ is analytic on the unit disc $D=\{z \in \mathbf{C}:|z|<1\}$, then

$$
\left|g^{\prime}(z)\right|^{2} \lambda(g(z)) \leq \frac{2}{\left[1-|z|^{2}\right]^{2}} \quad \text { for } z \in D
$$

Hint: Find an analytic map $h: D \rightarrow H$ and apply the lemma to the composition $g=f \circ h$.]
6. (10 pts .) Let Q be the positive quadrant of the complex plane.
(a) Find a harmonic Φ on Q that approaches 1 on the positive x axis and -1 on the positive y axis.
(b) Find a harmonic Ψ on Q such that $F=\Phi+i \Psi$ is analytic on Q.
(c) Sketch a few curves of constant Φ and Ψ (so-called equipotential and flow lines).

Cauchy-Riemann equations:

$$
\begin{array}{cc}
f(x+i y)=u+i v: \quad u_{x}=v_{y}, & v_{x}=-u_{y} \\
f\left(r e^{i \theta}\right)=u+i v: \quad r u_{r}=v_{\theta}, & r v_{r}=-u_{\theta} \\
f(x+i y)=\rho e^{i \psi}: \quad \rho_{x}=\rho \psi_{y}, & \rho_{y}=-\rho \psi_{x} \\
f\left(r e^{i \theta}\right)=\rho e^{i \psi}: \quad r \rho_{r}=\rho \psi_{\theta}, & \rho_{\theta}=-r \rho \psi_{r}
\end{array}
$$

