Name:

Please show all work and justify answers. If you use a known result, state the result in full.

- 1. (10 pts.) Suppose Ω is a domain in the complex plane and f_n is a sequence in $\mathcal{H}(\Omega)$ such that $f_n \to f$ uniformly on compact subsets of Ω , The Weierstrass theorem says that in this case $f \in \mathcal{H}(\Omega)$. Prove the second part of the theorem which says that for any k the k-th derivatives $f_n^{(k)} \to f^{(k)}$ uniformly on compact subsets of Ω .
- 2. (10 pts.) Find the first three nontrivial terms of the Laurent series at the origin of

(a)
$$f(z) = \frac{\cos z}{z - z^3}$$
 (b) $f(z) = \cot z$

3. (10 pts.) For each of the following covering maps p, how many elements are there in each stalk $p^{-1}(x)$? Compute and sketch $p^{-1}(1)$. Illustrate that p is indeed a covering map by sketching an evenly covered neighborhood of 1 and its preimage under p.

(a)
$$p(z) = z^4 : \mathbf{C} \setminus \{0\} \to \mathbf{C} \setminus \{0\}$$
 (b) $p(z) = \sin z : \mathbf{C} \to \mathbf{C}$

- 4. (10 pts.) Suppose f is entire and never zero. What are all the possibilities for the range of 1/f? Prove your assertion.
- 5. (10 pts.) Suppose λ is a real valued twice differentiable function on a domain $\Omega \subseteq \mathbf{C}$ such that $\frac{1}{4}\Delta(\ln \lambda) \geq \lambda$. Show that if $f: H \to \Omega$ is analytic on the right half plane $H = \{z \in \mathbf{C}: \Re[z] > 0\}$, then

$$|f'(z)|^2 \lambda(f(z)) \le \frac{1}{2(\Re[z])^2} \text{ for } z \in H.$$

[You may use Ahlfors's version of the Schwartz lemma saying that if $g: D \to \Omega$ is analytic on the unit disc $D = \{z \in \mathbb{C}: |z| < 1\}$, then

$$|g'(z)|^2 \lambda(g(z)) \le \frac{2}{\left[1 - |z|^2\right]^2}$$
 for $z \in D$.

Hint: Find an analytic map $h: D \to H$ and apply the lemma to the composition $g = f \circ h$.]

- 6. (10 pts.) Let Q be the positive quadrant of the complex plane.
 - (a) Find a harmonic Φ on Q that approaches 1 on the positive x axis and -1 on the positive y axis.
 - (b) Find a harmonic Ψ on Q such that $F = \Phi + i\Psi$ is analytic on Q.
 - (c) Sketch a few curves of constant Φ and Ψ (so-called equipotential and flow lines).

	Cauchy-Riemann equations:						
	Ĵ	f(x+iy)	u) = u + u	iv: u_x	$v_y = v_y,$	$v_x = -u_y$	
	ſ	$f(re^{i\theta})$	$= u + i \psi$	$v: ru_r$	$= v_{\theta},$	$rv_r = -u_{\theta}$	
	J f	(x+iy)	$= \rho e^{i\psi}$	$\rho_x = r \rho_x = r$	$\rho \psi_y,$	$\rho_y = -\rho \psi_x$ $\rho_y = -r \rho \psi_x$	
	J	(/ C) -	- <i>p</i> c .	$p_r - p_r$	$\phi \phi \phi$, p	$\phi = \gamma p \varphi r$	
1	2	3	4	5	6	total (60)	
						%	