Name:

Please show all work.

- 1. (20 pts.) Let D denote the open unit disc. Show that there is no analytic function $f: D \to D$ with f(0) = 2/3 and f'(0) = 5/6.
- 2. (20 pts.) Let $G = \{z : |\text{Im } z| < \pi/2\}$ and suppose $f : G \to \mathbb{C}$ is analytic and

$$\limsup_{z \to w} |f(z)| \le M \qquad \forall w \in \partial G.$$

Also, suppose $A < \infty$ and a < 1 can be found such that

$$|f(z)| < e^{Ae^{a|\operatorname{Re} z|}} \qquad \forall z \in G.$$

Show that $|f(z)| \leq M$ for all z in G.

- 3. (20 pts.) Let $G = \mathbb{C} \setminus \{z \in \mathbb{C} : \text{Im } z \in \mathbb{Z}\}$. Sketch G and the sets $K_n = \{z : |z| \le n, d(z, G^c) \ge 1/n\}$ for n = 1, 2, 3, 4.
- 4. (20 pts.) Suppose G is a domain in **C** and (f_n) is a sequence in $\mathcal{C}(G, \mathbf{C})$ which converges to f uniformly on compact subsets of G.
 - (a) Show that $f \in \mathcal{C}(G, \mathbf{C})$.
 - (b) Show that if $f_n \in \mathcal{H}(G)$ for all n, then $f \in \mathcal{H}(G)$.

1	2	3	4	total (80)	%