Theory of Functions of a Complex Variable II / MAT5233

Midterm 2 / April 28, 1999 / Instructor: D. Gokhman

Name:
Please show all work.

1. (20 pts.) Let D denote the open unit disc. Show that there is no analytic function $f: D \rightarrow D$ with $f(0)=2 / 3$ and $f^{\prime}(0)=5 / 6$.
2. (20 pts.) Let $G=\{z:|\operatorname{Im} z|<\pi / 2\}$ and suppose $f: G \rightarrow \mathbf{C}$ is analytic and

$$
\limsup _{z \rightarrow w}|f(z)| \leq M \quad \forall w \in \partial G .
$$

Also, suppose $A<\infty$ and $a<1$ can be found such that

$$
|f(z)|<e^{A e^{a|\mathrm{Re} z|}} \quad \forall z \in G .
$$

Show that $|f(z)| \leq M$ for all z in G.
3. (20 pts.) Let $G=\mathbf{C} \backslash\{z \in \mathbf{C}: \operatorname{Im} z \in \mathbf{Z}\}$. Sketch G and the sets $K_{n}=\left\{z:|z| \leq n, d\left(z, G^{c}\right) \geq 1 / n\right\}$ for $n=1,2,3,4$.
4. (20 pts.) Suppose G is a domain in \mathbf{C} and $\left(f_{n}\right)$ is a sequence in $\mathcal{C}(G, \mathbf{C})$ which converges to f uniformly on compact subsets of G.
(a) Show that $f \in \mathcal{C}(G, \mathbf{C})$.
(b) Show that if $f_{n} \in \mathcal{H}(G)$ for all n, then $f \in \mathcal{H}(G)$.

1	2	3	4	total (80)	\%

