Theory of Functions of a Complex Variable II, MAT 5233 Midterm, March 5, 1997 Instructor: D. Gokhman

Name: ____

Show all work.

1. (10 pts.) Find all zeros and poles in the Riemann sphere Σ and their order for the rational function

$$f(z) = \frac{z^6 + z^5}{z^4 - 2z^2 + 1}$$

- 2. (35 pts.) Consider $f: \mathbf{C} \rightarrow \Sigma, f(z) = \tan z$.
 - (a) Prove that π is a period of f(z). What is the period group of f(z)?
 - (b) Find the first two terms of the Laurent expansion of f(z) at z = 0. Repeat at $z = \pi/2$.
 - (c) Is f(z) meromorphic on **C**? What are the zeros and poles of f(z) and what is their order?
 - (d) Can f(z) be extended to a meromorphic function on Σ ? Explain.
 - (e) Let $\zeta = e^{iz}$. Find a function $\varphi \colon \mathbf{C} \setminus \{0\} \to \Sigma$ such that $\varphi(\zeta) = f(z)$.
 - (f) Expand $\varphi(\zeta)$ in a Laurent series valid for $|\zeta| > 1$.
 - (g) Find the corresponding Fourier series expansion of f(z). Where is it valid?
- 3. (12 pts.) True or false circle your choice. No justification necessary.
- T F (a) $\mathbf{Z}\left[i\sqrt{2}\right] \stackrel{\text{def}}{=} \left\{n + im\sqrt{2}: n, m \in \mathbf{Z}\right\}$ is a discrete additive subgroup of C.
- T F (b) If Ω is discrete additive subgroup of C, then Ω has no accumulation points.
- T F (c) If $f: \Sigma \to \Sigma$ is meromorphic, then it is rational.
- T F (d) If $f: \mathbf{C} \to \Sigma$ is meromorphic and has no poles, then f is constant.

1	2a-d	2e-g	3	total (57)	%