Theory of Functions of a Complex Variable II, mat 5233

Midterm, March 5, 1997
Instructor: D. Gokhman

Name: \qquad

Show all work.

1. (10 pts.) Find all zeros and poles in the Riemann sphere Σ and their order for the rational function

$$
f(z)=\frac{z^{6}+z^{5}}{z^{4}-2 z^{2}+1}
$$

2. (35 pts.) Consider $f: \mathbf{C} \rightarrow \Sigma, f(z)=\tan z$.
(a) Prove that π is a period of $f(z)$. What is the period group of $f(z)$?
(b) Find the first two terms of the Laurent expansion of $f(z)$ at $z=0$. Repeat at $z=\pi / 2$.
(c) Is $f(z)$ meromorphic on \mathbf{C} ? What are the zeros and poles of $f(z)$ and what is their order?
(d) Can $f(z)$ be extended to a meromorphic function on Σ ? Explain.
(e) Let $\zeta=e^{i z}$. Find a function $\varphi: \mathbf{C} \backslash\{0\} \rightarrow \Sigma$ such that $\varphi(\zeta)=f(z)$.
(f) Expand $\varphi(\zeta)$ in a Laurent series valid for $|\zeta|>1$.
(g) Find the corresponding Fourier series expansion of $f(z)$. Where is it valid?
3. (12 pts.) True or false - circle your choice. No justification necessary.

T F (a) $\mathbf{Z}[i \sqrt{2}] \stackrel{\text { def }}{=}\{n+i m \sqrt{2}: n, m \in \mathbf{Z}\}$ is a discrete additive subgroup of \mathbf{C}.
T F (b) If Ω is discrete additive subgroup of \mathbf{C}, then Ω has no accumulation points.
T F (c) If $f: \Sigma \rightarrow \Sigma$ is meromorphic, then it is rational.
T F (d) If $f: \mathbf{C} \rightarrow \Sigma$ is meromorphic and has no poles, then f is constant.

1	$2 \mathrm{a}-\mathrm{d}$	$2 \mathrm{e}-\mathrm{g}$	3	total (57)	$\%$

