Theory of Functions of a Complex Variable II, MAT 5233 Final, due 19:45 Monday, May 8, 1995 Instructor: D. Gokhman

1	2	3	4	5	6	total

1. SERIES

- 1. (Hille 5.5.6) What is the sum of the series $\sum_{n=1}^{\infty} n^2 z^n$? What is the radius of convergence?
- 2. (Hille 5.6.2) Express $\sum_{n=0}^{\infty} P(n)z^n/n!$ in terms of e^z , if $P(n) = a_0 + a_1n + a_2n^2$. What is the radius of convergence?
- 3. Consider the series $\sum_{n \in \mathbf{Z} \setminus \{0\}} e^{nz}/n$. Find the set of convergence of the series. Where is the convergence uniform? What function does the series converge to? Include proofs (you may refer to theorems).
- 2. Residues
 - 1. (Hille 9.1.1d,e, B/G 1.12.3) Find $\operatorname{Res}_{\omega}S$ for the idicated 1-forms ω and subsets $S \subseteq \mathbb{C}$:

(a)
$$\omega = \frac{(z^4 + 1) dz}{z^2 (z - 2)^3}$$
, $S = \{2\}$ (b) $\omega = \frac{dz}{z^2 \sin z}$, $S = \{0\}$
(c) $\omega = dz/z$, $S = \overline{B}(0, 1)$ (d) $\omega = dz/z$, $S = \overline{B}(3, 1)$

- 2. (B/G 1.12.4) Let $T_j, j = 1, ...n$ be holes of a domain $\Omega \subseteq \mathbf{C}$ and $\lambda_j, j = 1, ...n$ arbitrary complex numbers. Construct a closed 1-form ω on Ω such that $\operatorname{Res}_{\omega} T_j = \lambda_j$.
- 3. (Hille 9.1.5c) Use residues to calculate the improper real integral:

$$\int_{-\infty}^{\infty} \frac{x^2 - 1}{(x^2 + 1)^2} \, dx$$