Name: \qquad

Please show all work and justify your answers.

1. (10 pts.) Evaluate the following integrals along the given paths (sketch):
(a) $\int_{\gamma} \frac{d z}{z^{3}-2 i z^{2}}$, where γ is the unit circle
(b) $\int_{\gamma} \bar{z} d z$, where $\gamma=\{z:|z-1+i|=1\}$
2. (10 pts.) Let $I(r)=\int_{\gamma} \frac{1}{z^{5}+1} d z$, where γ is the top half of a circle centered at the origin of radius $r>1$. Show that $I(r) \rightarrow 0$ as $r \rightarrow \infty$.
3. (10 pts.) Suppose f_{n} is a sequence of continuous functions on a domain Ω and $f_{n} \rightarrow f$ uniformly on compact subsets of Ω. Prove that for any rectifiable path γ in Ω

$$
\int_{\gamma} f_{n}(z) d z \rightarrow \int_{\gamma} f(z) d z
$$

4. (10 pts.) Suppose Ω is a domain and $f \in \mathcal{H}(\Omega)$ is nonconstant. Show that a local minimum of $|f|$ can occur in Ω only at a root of f.
5. (10 pts.) Suppose f is entire and $|f(z)| \leq|z|$ for all z with $|z|>1$. Prove that f is a polynomial of degree at most 1 .

1	2	3	4	5	total (50)
Prelim. course grade:					$\%$

