Name: _

Please show all work and justify your answers.

- 1. (10 pts.) Evaluate the following integrals along the given paths (sketch):
 - (a) $\int_{\gamma} \frac{dz}{z^3 2iz^2}$, where γ is the unit circle (b) $\int_{\gamma} \overline{z} dz$, where $\gamma = \{z : |z - 1 + i| = 1\}$
- 2. (10 pts.) Let $I(r) = \int_{\gamma} \frac{1}{z^5 + 1} dz$, where γ is the top half of a circle centered at the origin of radius r > 1. Show that $I(r) \to 0$ as $r \to \infty$.
- 3. (10 pts.) Suppose f_n is a sequence of continuous functions on a domain Ω and $f_n \to f$ uniformly on compact subsets of Ω . Prove that for any rectifiable path γ in Ω

$$\int_{\gamma} f_n(z) \, dz \to \int_{\gamma} f(z) \, dz$$

- 4. (10 pts.) Suppose Ω is a domain and $f \in \mathcal{H}(\Omega)$ is nonconstant. Show that a local minimum of |f| can occur in Ω only at a root of f.
- 5. (10 pts.) Suppose f is entire and $|f(z)| \le |z|$ for all z with |z| > 1. Prove that f is a polynomial of degree at most 1.

1	2	3	4	5	total (50)
					%

Prelim. course grade: %