Name: \qquad
Please show all work.

1. (10 pts.) Construct a fractional linear transformation that takes the upper half plane to the disc of radius 1 centered at -1 . Is such a fractional linear transformation unique? Explain.
2. (10 pts.) Suppose $f: \mathbf{C} \rightarrow \mathbf{C}$ is entire (analytic everywhere). Prove the following:
(a) If $\overline{f(z)}$ is entire, then $f(z)=$ const.
(b) If $f(\bar{z})$ is entire, then $f(z)=$ const.
3. (10 pts.) Let $u \neq 0$ and define $f: \mathbf{C} \rightarrow \mathbf{C}$ by $f(z)=u z$. Prove that f is conformal at 0 . Hints: Pick arbitrary nonzero z and w and show that the angle between $f(z)$ and $f(w)$ is the same as the angle between z and w. Use either polar coordinates or linear algebra.
4. (10 pts.) Consider the power series $\sum_{n=1}^{\infty} \frac{(z+i)^{n}}{2^{n} n^{2}}$.
(a) Find the radius of convergence and sketch the disc of convergence.
(b) Prove that the series converges on the boundary of the disc of convergence.

1	2	3	4	total (40)
Prelim. course grade: $\%$				

