Final exam / 2002.12.11 / Theory of Functions of a Complex Variable I / MAT 5223.001

Name:

Please show all work and justify your answers.

1. (10 pts.) Sketch the sets $H = \{z \in \mathbb{C} : \Re[z] \ge \Im[z]\}$ and $D = \{z \in \mathbb{C} : |z - i| \ge 2\}$. Find a fractional linear transformation that maps H onto D. Is such a fractional linear transformation unique? Explain.

Hint: first map both ${\cal H}$ and ${\cal D}$ to the upper half plane

- 2. (10 pts.) Let $D = \{z \in C : |z| < 1\}$. Suppose $f \in \mathcal{H}(D)$ and let $g(z) = \overline{f(\overline{z})}$. Prove or disprove that $g \in \mathcal{H}(D)$.
- 3. (10 pts.) Define $f: \mathbf{C} \to \mathbf{C}$ by $f(z) = \overline{z}$. Prove or disprove that f is conformal.
- 4. (10 pts.) Consider the series $\sum_{n=1}^{\infty} \frac{(2z-i)^n}{n}$
 - (a) Show that this is a power series. Determine and sketch the disc of convergence.
 - (b) Does the series converge on the boundary of the disc of convergence? Explain.
- 5. (20 pts.) Sketch the given paths γ and evaluate the following integrals along them:

(a)
$$\int_{\gamma} \frac{dz}{3z^3 + iz^2}$$
, where $\gamma = \{z \in \mathbf{C}: |z| = 0.1\}$
(b) $\int_{\gamma} \Im[z] dz$, where γ is the straight line segment from -1 to

- 6. (10 pts.) Prove that $\left| \int_0^1 \sqrt{t} e^{it} dt \right| \le \frac{2}{3}$
- 7. (10 pts.) Suppose $\Omega \subseteq \mathbf{C}$ is a domain and f_n is a sequence in $\mathcal{H}(\Omega)$ such that $f_n \to f$ uniformly on compact subsets of Ω . By the theorem of Weierstrass $f \in \mathcal{H}(\Omega)$. Prove that for any $z \in \Omega$ we have $f'_n(z) \to f'(z)$.

Hints: Cauchy integral formula (which path?); uniform convergence \Rightarrow termwise integration

- 8. (20 pts.) Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Suppose $\Omega \subseteq \mathbb{C}$ is a domain and $\overline{D} \subseteq \Omega$. Let $f \in \mathcal{H}(\Omega)$ such that f(0) = 0.
 - (a) Prove that there exists $g \in \mathcal{H}(\Omega)$ such that f(z) = z g(z). Determine g(0).
 - (b) Show that the maxima of |f| and |g| on \overline{D} exist and are equal.

Hints: (a) Taylor series, principle of analytic continuation; (b) maximum modulus principle

1	2	3	4	5	6	7	8	total (100)
								%

-i