Theory of Functions of a Complex Variable I / MAT 5223.001 Midterm 2 / November 23, 1998 / Instructor: D. Gokhman

Name:

1. (10 pts.) For each of the following $f : \mathbf{C} \to \mathbf{C}$ find the set where f is complex differentiable and the set where f is analytic.

(a)
$$f(z) = |z|^2$$
 (b) $f(z) = (\overline{z} + i)^2$

- 2. (15 pts.) Let f(z) = 1/(2i z).
 - (a) Find the set $\{z \in \mathbb{C}: f \text{ is complex differentiable at } z\}$.
 - (b) Expand f(z) in a power series at the origin.
 - (c) Find the radius of convergence of this power series.
- 3. (20 pts.) Evaluate the following integrals.(You may use the Cauchy Integral Formula, where applicable.)

(a)
$$\int_{\gamma} \frac{\cos(z)}{z^3} dz$$
, where $\gamma = \left\{ i + 2e^{i\theta}: -\pi \le \theta \le \pi \right\}$,
(b) $\int_{\gamma} \frac{dz}{z^3 + z}$, where $\gamma = \left\{ 2e^{i\theta}: -\pi \le \theta \le \pi \right\}$,

(c) $\int_{\gamma} \frac{dz}{2z+i}$, where γ is the unit circle traversed counterclockwise,

(d)
$$\int_{\gamma} \operatorname{Re} z \, dz$$
, where γ is the segment from -1 to i .

4. (10 pts.) Suppose $f: \mathbf{C} \to \mathbf{C}$ is analytic and $\exists a \in \mathbf{R} \quad \forall z \in \mathbf{C} \quad |f(z)| \leq a |z|$. Prove that f is linear.

1	2	3	4	total (55)	%