Theory of Functions of a Complex Variable I, MAT 5223
 Midterm, October 21, 1996
 Instructor: D. Gokhman

Name: \qquad

Show all work. Box your answers.

1. (20 pts.) Find and sketch all $z \in \mathbf{C}$ such that
(a) $z^{5}-1+i=0$
(b) $1+z+z^{2}+z^{3}+z^{4}=0$
2. (24 pts.) For each of the following sets $E \subseteq \mathbf{C}$ find the limit set E^{\prime}. Sketch both E and E^{\prime}.
(a) $E=\left\{i^{n}: n \in \mathbf{Z}\right\}$
(b) $E=\{z \in \mathbf{C}: 0<|z|<1\}$
(c) $E=\left\{e^{i \theta} \in \mathbf{C}: \theta \in \mathbf{Q}\right\}$
3. (40 pts.) For the following functions $f: \mathbf{C} \rightarrow \mathbf{C}$ find the largest subset of \mathbf{C}, where f is \mathbf{C}-differentiable.
(a) $f(z)=z$
(b) $f(z)=\bar{z}$
(c) $f(z)=z \bar{z}$
(d) $f(z)=e^{-z}$
4. (20 pts.) Find a Möbius transformation which takes the outside of the circle of radius 2 centered at i to the upper half plane $\{z \in \mathbf{C}: \operatorname{Im} z>0\}$.
5. (28 pts.) True or false - circle your choice. No justification necessary.

T F (a) The group of Möbius transformations is commutative.
T F (b) Stereographic projection is conformal.
T F (c) Each complex polynomial can be factored completely.
T F (d) If $z_{n} \rightarrow \infty$ then $\operatorname{Re} z_{n} \rightarrow \infty$ and $\operatorname{Im} z_{n} \rightarrow \infty$.
T F (e) If $z_{n} \rightarrow z$, then $\left|z_{n}\right| \rightarrow|z|$ and $\operatorname{Arg} z_{n} \rightarrow \operatorname{Arg} z$.
T F (f) If f and g are entire maps $\mathbf{C} \rightarrow \mathbf{C}$, then so is $f \circ g$.
T F (g) If f is C-differentiable, then f is continuous.

1	2	3	4	5	total

