Theory of Functions of a Complex Variable I, MAT 5223 Midterm, October 21, 1996 Instructor: D. Gokhman

Name: ____

Show all work. Box your answers.

1. (20 pts.) Find and sketch all $z \in \mathbf{C}$ such that

(a) $z^5 - 1 + i = 0$ (b) $1 + z + z^2 + z^3 + z^4 = 0$

2. (24 pts.) For each of the following sets $E \subseteq \mathbf{C}$ find the limit set E'. Sketch both E and E'.

(a)
$$E = \{i^n : n \in \mathbf{Z}\}$$
 (b) $E = \{z \in \mathbf{C} : 0 < |z| < 1\}$ (c) $E = \{e^{i\theta} \in \mathbf{C} : \theta \in \mathbf{Q}\}$

3. (40 pts.) For the following functions $f: \mathbb{C} \to \mathbb{C}$ find the largest subset of \mathbb{C} , where f is \mathbb{C} -differentiable.

(a)
$$f(z) = z$$
 (b) $f(z) = \overline{z}$ (c) $f(z) = z\overline{z}$ (d) $f(z) = e^{-z}$

- 4. (20 pts.) Find a Möbius transformation which takes the outside of the circle of radius 2 centered at *i* to the upper half plane $\{z \in \mathbb{C}: \text{Im } z > 0\}$.
- 5. (28 pts.) True or false circle your choice. No justification necessary.
- T F (a) The group of Möbius transformations is commutative.
- T F (b) Stereographic projection is conformal.
- T F (c) Each complex polynomial can be factored completely.
- T F (d) If $z_n \to \infty$ then $\operatorname{Re} z_n \to \infty$ and $\operatorname{Im} z_n \to \infty$.
- T F (e) If $z_n \to z$, then $|z_n| \to |z|$ and $\operatorname{Arg} z_n \to \operatorname{Arg} z$.
- T F (f) If f and g are entire maps $\mathbf{C} \to \mathbf{C}$, then so is $f \circ g$.
- T F (g) If f is C-differentiable, then f is continuous.

1	2	3	4	5	total