Theory of Functions of a Complex Variable I, MAT 5223
Final, December 9, 1996
Instructor: D. Gokhman

Name: \qquad

1. (28 pts.) Integrate counterclockwise over the unit circle. Show your work.

Hints: In (c-e) you might want to use Cauchy's Integral Formula and in ($\mathrm{f}-\mathrm{g}$) it may help to find the first few terms of the Laurent series expansion of the integrand.

$$
\begin{array}{ccc}
\begin{array}{cl}
\text { (a) } \int z^{-n} d z, \quad n \in \mathbf{Z} & \text { (b) } \int z \log (z) d z \\
\text { (c) } \int \frac{1}{\left(2 z^{2}-z\right)} d z & \text { (d) } \int \frac{z}{(2 z+1)^{2}} d z
\end{array} \quad \text { (e) } \int \frac{1}{\left(z^{2}+4\right)^{3}} d z \\
\text { (f) } \int z^{-7} \exp \left(z^{3}\right) d z & \text { (g) } \int \frac{z}{\sin \left(2 z^{2}\right)} d z
\end{array}
$$

2. (8 pts.) Expand $\frac{1}{1-z}$ in a Taylor series at 0 . Show that this series converges uniformly on any compact subset of the open unit disc.
3. (8 pts.) Suppose f is entire, $f(0)=0$, and $f \not \equiv 0$. Show that there exists an open neighborhood of 0 containing no other zeros of f.
4. (12 pts.) True/false questions. Circle your choice. Justification is not required.

T F (a) An entire function is infinitely differentiable.
T F (b) There are no bounded nonconstant entire functions.
T F (c) Every complex polynomial has a zero.
T F (d) Uniform limit of holomorphic functions is holomorphic.
T F (e) If f is holomorphic on a domain Ω, then the integral of f around any closed rectifiable curve in Ω is 0 .
T F (f) If the integral of f around any closed rectifiable curve in a domain Ω is 0 , then f is holomorphic on Ω.

1a-b	$1 \mathrm{c}-\mathrm{e}$	$1 \mathrm{f}-\mathrm{g}$	2	3	4	total (56)	$\%$

