Theory of Functions of a Complex Variable I, MAT 5223 Final, December 9, 1996 Instructor: D. Gokhman

Name:

1. (28 pts.) Integrate counterclockwise over the unit circle. Show your work.

Hints: In (c–e) you might want to use Cauchy's Integral Formula and in (f–g) it may help to find the first few terms of the Laurent series expansion of the integrand.

(a)
$$\int z^{-n} dz$$
, $n \in \mathbb{Z}$ (b) $\int z \log(z) dz$
(c) $\int \frac{1}{(2z^2 - z)} dz$ (d) $\int \frac{z}{(2z + 1)^2} dz$ (e) $\int \frac{1}{(z^2 + 4)^3} dz$
(f) $\int z^{-7} \exp(z^3) dz$ (g) $\int \frac{z}{\sin(2z^2)} dz$

- 2. (8 pts.) Expand $\frac{1}{1-z}$ in a Taylor series at 0. Show that this series converges uniformly on any compact subset of the open unit disc.
- 3. (8 pts.) Suppose f is entire, f(0) = 0, and $f \not\equiv 0$. Show that there exists an open neighborhood of 0 containing no other zeros of f.
- 4. (12 pts.) True/false questions. Circle your choice. Justification is not required.
- T F (a) An entire function is infinitely differentiable.
- T F (b) There are no bounded nonconstant entire functions.
- T F (c) Every complex polynomial has a zero.
- T F (d) Uniform limit of holomorphic functions is holomorphic.
- T F (e) If f is holomorphic on a domain Ω , then the integral of f around any closed rectifiable curve in Ω is 0.
- T F (f) If the integral of f around any closed rectifiable curve in a domain Ω is 0, then f is holomorphic on Ω .

1a-b	1с-е	1f–g	2	3	4	total (56)	%