Theory of Functions of a Complex Variable I, MAT 5223 Final, due 10:45pm Wednesday December 14, 1994 Instructor: D. Gokhman

Name: _

1	2	3	4	5	6	total (140)

- 1. (10 pts.) ROOTS Find all solutions of the equation $z^5 = -4 + 3i$ and plot them.
- 2. (10 pts.) STEREOGRAPHIC PROJECTION Given two points $z_1, z_2 \in \mathbf{C}$, find the length of the chord between the corresponding points on the Riemann sphere? Pick two specific values for z_1 and z_2 and sketch. For which z_1, z_2 are the two corresponding points on the sphere diametrically opposite?
- 3. (10 pts.) Euler's formula

For $a, b \in \mathbf{R}$ find the partial sum:

$$\sum_{k=0}^{n} \sin(a+kb)$$

- 4. (40 pts.) TRANSFORMATIONS
 - (a) Sketch the image of the segment $\operatorname{Re} z = \operatorname{Im} z$ between 0 and 1 + i under $w = e^{z}$? What is the arclength of the image?
 - (b) Show that the group of Möbius transformations is not commutative.
 - (c) For which $a \in \mathbf{R}$ is the group generated by $w = e^{ia}z$ finite?
 - (d) Find the group of transformations corresponding to rotations of the Riemann sphere with respect to the imaginary axis.
- 5. (40 pts.) INTEGRATION
 - (a) Find $\int z^n \log(z) dz$, where the path of integration is the unit circle (counterclockwise).
 - (b) Find $\int \frac{e^{zz}}{z^3} dz$, where the path of integration is the unit circle (counterclockwise).
 - (c) Suppose f/z is continuous in a sector centered at the origin with aperture θ . Let the path $\gamma(r)$ be the intersection of |z| = r with the sector. Show that $\int_{\gamma(r)} \frac{f(z)}{z} dz \to \theta i f(0)$ as $r \to 0$.
 - (d) Suppose g is entire and $zg(z) \to 0$ as $z \to \infty$. Show that integrals of g(z) dz along any two rays from 0 to ∞ are equal, assuming they exist. Hint: use the results of part (c).

6. (30 pts.) POWER SERIES

Find the Maclaurin series for each of the following funcions and determine its radius of convergence

(a)
$$\frac{z}{z+2}$$

(b) $\tan(z)$
(c) $\int_0^z \frac{\sin(z)}{z} dz$

These problems are from A collection of problems on complex analysis by Volkovyskii, Lunts and Aramanovich, 1960 (Dover 0486669130, QA331.7.V6513 1991)