Theory of Functions of a Complex Variable I, mat 5223 Final, due 10:45pm Wednesday December 14, 1994 Instructor: D. Gokhman

Name:

1	2	3	4	5	6	total (140)

1. (10 pts.) ROOTS

Find all solutions of the equation $z^{5}=-4+3 i$ and plot them.
2. (10 pts.) STEREOGRAPHIC PROJECTION

Given two points $z_{1}, z_{2} \in \mathbf{C}$, find the length of the chord between the corresponding points on the Riemann sphere? Pick two specific values for z_{1} and z_{2} and sketch. For which z_{1}, z_{2} are the two corresponding points on the sphere diametrically opposite?
3. (10 pts.) Euler's formula

For $a, b \in \mathbf{R}$ find the partial sum: $\quad \sum_{k=0}^{n} \sin (a+k b)$
4. (40 pts.) TRANSFORMATIONS
(a) Sketch the image of the segment $\operatorname{Re} z=\operatorname{Im} z$ between 0 and $1+i$ under $w=e^{z}$? What is the arclength of the image?
(b) Show that the group of Möbius transformations is not commutative.
(c) For which $a \in \mathbf{R}$ is the group generated by $w=e^{i a} z$ finite?
(d) Find the group of transformations corresponding to rotations of the Riemann sphere with respect to the imaginary axis.
5. (40 pts.) INTEGRATION
(a) Find $\int z^{n} \log (z) d z$, where the path of integration is the unit circle (counterclockwise).
(b) Find $\int \frac{e^{2 z}}{z^{3}} d z$, where the path of integration is the unit circle (counterclockwise).
(c) Suppose f / z is continuous in a sector centered at the origin with aperture θ. Let the path $\gamma(r)$ be the intersection of $|z|=r$ with the sector. Show that $\int_{\gamma(r)} \frac{f(z)}{z} d z \rightarrow \theta i f(0)$ as $r \rightarrow 0$.
(d) Suppose g is entire and $z g(z) \rightarrow 0$ as $z \rightarrow \infty$. Show that integrals of $g(z) d z$ along any two rays from 0 to ∞ are equal, assuming they exist. Hint: use the results of part (c).
6. (30 pts.) POWER SERIES

Find the Maclaurin series for each of the following funcions and determine its radius of convergence
(a) $\frac{z}{z+2}$
(b) $\tan (z)$
(c) $\int_{0}^{z} \frac{\sin (z)}{z} d z$

These problems are from A collection of problems on complex analysis by Volkovyskii, Lunts and Aramanovich, 1960 (Dover 0486669130, QA331.7.V6513 1991)

