University of Texas at San Antonio

Complex Variable I, MAT 5223 Exam $\mathcal{N}^{0}2$, 11/23/92 Instructor: D. Gokhman

Name:

- 1. (20 pts.)
 - (a) Classify all functions $f: \mathbb{C} \to \mathbb{C}$ such that f and \overline{f} are analytic.
 - (b) Show that if $f: \mathbb{C} \to \mathbb{C}$ is analytic and |f| is constant, then f is constant.
- 2. (54 pts.) For the following functions f(z) and curves γ
 - (i) Find a parametrization for γ .
 - (ii) Calculate $V(\gamma)$.
 - (iii) Calculate $\int_{\gamma} f(z) dz$.
 - (a) $f(z) = \frac{z+2}{z}$ and γ is given by $\{z: |z| = 2, \operatorname{Re} z \ge 0\}$.
 - (b) $f(z) = \frac{z+2}{z}$ and γ is given by $\{z: |z| = 2, \operatorname{Re} z \le 0\}$.
 - (c) f(z) = z 1 and γ is given by the straight line segment from 0 to 2.
- 3. (26 pts.) In problem 2
 - (i) Check your answer in part (c) by finding an antiderivative of f(z) and applying the Fundamental Theorem of Calculus.
 - (ii) Explain why the Fundamental Theorem of Calculus does not apply to parts (a) and (b).
 - (iii) Show how the Cauchy integral formula can be applied to obtain the difference between parts (a) and (b).