University of Texas at San Antonio

Complex Variable I, MAT 5223 Exam $\mathcal{N}^{0}1$, 10/19/92 Instructor: D. Gokhman

Name: _____

- 1. (30 pts.)
 - (a) Find all $\theta \in [0, 2\pi)$ such that $|e^{i\theta} 1| = 2$.
 - (b) Find all $z \in \mathbf{C}$ such that $1 + z + z^2 + \dots + z^n = 0$.
 - (c) Find all $z \in \mathbf{C}$ such that $\operatorname{Re} z^n \ge 0 \ \forall n \in \mathbf{N}$.
- 2. (30 pts.) Suppose $E \subseteq \mathbf{C}$ and E' is the set of all limit points of E.
 - (a) Prove that $\stackrel{\circ}{E} \subseteq E'$.
 - (b) Find E' for $E = \{i^k \colon k \in \mathbf{N}\}.$
 - (c) Find E' for $E = \{z: \exists k \in \mathbb{N} \ z^k = 2\}.$
- 3. (40 pts.) True of false questions, circle your choice. If you choose TRUE, prove the assertion somewhere in the lower part of the page. If FALSE, provide a counterexample.

Suppose X is a metric space and $f: X \to \mathbf{C}$ is continuous.

- T F (a) If $E \subseteq \mathbf{C}$ is closed, then $f^{-1}(E)$ is closed.
- T F (b) If $F \subseteq X$ is closed, then f(F) is complete.
- T F (c) If X is compact, then f is Lipshitz continuous.
- T F (d) If X is path connected, then so is f(X).