University of Texas at San Antonio

Complex Variable I, mat 5223
$\operatorname{Exam} \mathcal{N}^{\mathrm{O}} 1,10 / 19 / 92$
Instructor: D. Gokhman
Name:

1. (30 pts.)
(a) Find all $\theta \in[0,2 \pi)$ such that $\left|e^{i \theta}-1\right|=2$.
(b) Find all $z \in \mathbf{C}$ such that $1+z+z^{2}+\ldots+z^{n}=0$.
(c) Find all $z \in \mathbf{C}$ such that $\operatorname{Re} z^{n} \geq 0 \forall n \in \mathbf{N}$.
2. (30 pts.) Suppose $E \subseteq \mathbf{C}$ and
E^{\prime} is the set of all limit points of E.
(a) Prove that $\stackrel{\circ}{E} \subseteq E^{\prime}$.
(b) Find E^{\prime} for $E=\left\{i^{k}: k \in \mathbf{N}\right\}$.
(c) Find E^{\prime} for $E=\left\{z: \exists k \in \mathbf{N} z^{k}=2\right\}$.
3. (40 pts .) True of false questions, circle your choice. If you choose TRUE, prove the assertion somewhere in the lower part of the page. If FALSE, provide a counterexample.
Suppose X is a metric space and $f: X \rightarrow \mathbf{C}$ is continuous.
$\mathrm{T} \quad \mathrm{F} \quad$ (a) If $E \subseteq \mathbf{C}$ is closed, then $f^{-1}(E)$ is closed.
T $\quad \mathrm{F} \quad$ (b) If $F \subseteq X$ is closed, then $f(F)$ is complete.
$\mathrm{T} \quad \mathrm{F} \quad$ (c) If X is compact, then f is Lipshitz continuous.
T $\quad \mathrm{F}$ (d) If X is path connected, then so is $f(X)$.
