Complex Variable I, MAT 5223. Final Exam. 12/17/93
Instructor: D. Gokhman

Show all pertinent work, answers alone are not sufficient. Box the answers. All questions carry equal weight.

Name: \qquad

1. Suppose $f(z)$ is entire. Prove that $\overline{f(\bar{z})}$ is entire.
2. Find an analytic function $f(z)=f(x+i y)$ such that $u(x, y)=\operatorname{Re} f(z)=x y$. Express f as a function of z.
3. Consider the map $f(z)=1 / z$. Determine the image of the $\operatorname{line} \operatorname{Im} z=1$. Sketch. Explain.
4. Consider the power series

$$
\sum_{n=1}^{\infty} z^{n} .
$$

(a) Find the radius of convergence.
(b) Prove that convergence is uniform in any disk centered at the origin with radius smaller than the radius of convergence.
5. (a) Find a parametrization for the straight line segment from 0 to $5-2 i$.
(b) Integrate $\operatorname{Im} z$ along this segment.
6. Calculate the following curve integrals:
(a) $\int_{\gamma} \frac{d z}{z^{2}+4}$, where γ is circle of radius 5 centered at 0 .
(b) $\int_{\gamma} \frac{\cos z d z}{z^{3}}$, where γ is:

1	2	3	4	5	6	total (120)

