Name: _

Please show all work and justify your answers.

- 1. Suppose R is a commutative ring with 1 and let U(R) denote the set of all units in R.
 - (a) Prove U(R) is a multiplicative group.
 - (b) Prove R is a local ring (has exactly one maximal ideal) if and only if $R \setminus U(R)$ is an ideal of R.

Hint: By Zorn's Lemma any proper ideal of R is contained in a maximal one.

- 2. Suppose G is an additive group. Fix an integer m > 1 and let $H = \{g \in G : mg = 0\}$. Prove the following:
 - (a) H < G
 - (b) $\operatorname{Hom}(\mathbf{Z}, G) \cong G$
 - (c) $\operatorname{Hom}(\mathbf{Z}_m, G) \cong H$
- 3. In the above problem with $G = \mathbf{Z}_n$ prove *H* is cyclic. What is its size?
- 4. If R is a ring with 1 and X is a set, find the R-module dual to the free R-module on X.
- 5. Prove that coproduct of a nonempty family of free R-modules is free.

1	2	3	4	5	total (50)	%

Prelim. course grade: %