Name: .

Please show all work and justify your answers. Throughout G denotes a group, R a commutative ring with unity, D an integral domain, and F a field.

- 1. Show that the set of all inner automorphisms of G (maps of the form $x \mapsto gxg^{-1}$ where $g \in G$) is a normal subgroup of the group of all automorphisms of G under composition.
- 2. Suppose $\varphi: G \to H$ is a surjective group homomorphism and T < H. Prove that $T \triangleleft H$ if and only if $\varphi^*T \triangleleft G$. Show that in that case $G/\varphi^*T \cong H/T$.
- 3. Suppose $f: A \to B$ is an *R*-module morphism. Prove that the natural inclusion $i: \ker f \to A$ is universal among *R*-module morphisms g into A such that $f \circ g = 0$. Specify the functor and the corresponding universal element.
- 4. Dualize the previous problem by proving that the natural projection $\pi: B \to B/f_*(A)$ is universal among *R*-module morphisms *g* from *B* such that $g \circ f = 0$. Specify the functor and the corresponding universal element.
- 5. Prove that the natural inclusion $i: D \to Q(D)$ of an integral domain in its field of quotients is universal among injective ring morphisms from an integral domain D to fields. Specify the functor and the corresponding universal element.
- 6. Prove or disprove that the ring $\mathbf{R}^{\mathbf{R}}$ of all functions $\mathbf{R} \to \mathbf{R}$ with pointwise addition and multiplication is an integral domain. What are the units of $\mathbf{R}^{\mathbf{R}}$? Let $c \in \mathbf{R}$. Prove that $J = \{f : \mathbf{R} \to \mathbf{R} : f(c) = 0\}$ is a maximal ideal of $\mathbf{R}^{\mathbf{R}}$.
- 7. Show that for any R-module M, there exists a surjective R-module morphism from some free R-module F to M.
- 8. Prove that coproduct of a nonempty family of free *R*-modules is free.

1	2	3	4	5	6	7	8	total (80)	%