Name: _

Please show all work and justify your answers.

- 1. Let \mathcal{L} be the lattice of all submodules of an *R*-module *M* and let $B \in \mathcal{L}$. In each case, determine whether $\varphi \colon \mathcal{L} \to \mathcal{L}$ must be a lattice morphism. If so, prove it. If not, construct an explicit counterexample, where φ violates a lattice morphism axiom.
 - (a) $\varphi(A) = A \cap B$.
 - (b) $\varphi(A) = A + B$.
- 2. Suppose $f: A \to B$ is an *R*-module morphism. State and prove the universal property of the projection $p: B \to \operatorname{coker} f$.
- 3. Suppose K is a principal ideal domain. Prove that all K-submodules of K are free.
- 4. Prove that the dual of an *R*-module epimorphism is a monomorphism.
- 5. Prove that the dual *R*-module $(R^2)^*$ is free. Hint: coordinate projections.

1	2	3	4	5	total (50)	%

Prelim. course grade: %