Name:

Please show all work and justify your answers.

- 1. How many group endomorphisms does $\mathbf{Z}_2 \oplus \mathbf{Z}_2$ have? Exhibit all group automorphisms of $\mathbf{Z}_2 \oplus \mathbf{Z}_2$. What famous group is $\operatorname{Aut}(\mathbf{Z}_2 \oplus \mathbf{Z}_2)$ isomorphic to? Explain.
- 2. Consider the additive group \mathbb{R}^2 . Let H be the subgroup generated by $\{(1,3), (3,1)\}$. Describe all cosets of H. Sketch H and a typical coset different from H.
- 3. Let $GL_2(\mathbf{R})$ denote the group of all invertible 2×2 real matrices under multiplication and let $SL_2(\mathbf{R}) = \{A \in GL_2(\mathbf{R}): |\det(A)| = 1\}.$
 - (a) Prove that $SL_2(\mathbf{R})$ is a subgroup of $GL_2(\mathbf{R})$.
 - (b) Prove that $H = \{A \in SL_2(\mathbf{R}): \det(A) = 1\}$ is a normal subgroup of $SL_2(\mathbf{R})$.
 - (c) Exhibit, with proof, a subgroup of $SL_2(\mathbf{R})$ that is not normal.
- 4. How many group morphisms $\mathbf{Z}_2 \to \mathbf{Z}_8$ are there? Ring morphisms? Explain.
- 5. How many ring automorphisms of $\mathbf{Z}_3[x]$ are there? Explain.
- 6. Suppose K is an integral domain. Let $a \in K$ and let J be the ideal of K[x] generated by x a.
 - (a) Prove that $K[x]/J \cong K$.
 - (b) Prove or disprove: J is a maximal ideal of K[x].
- 7. Construct the coproduct of two R-modules A and B by specifying the object and the two insertions. State the universal property of coproduct and prove that your construction satisfies it.
- 8. (a) Prove that every subgroup of **Z** is a free **Z**-module (i.e. a free abelian group).
 - (b) Give an explicit example of a **Z**-module that is not free. Explain.
- 9. Suppose $\varphi \colon A \to B$ is an *R*-module epimorphism and $\varphi^* \colon B^* \to A^*$ is its dual. Prove that $\operatorname{Im}(\varphi^*) = \{f \in \operatorname{Hom}_R[A, R] \colon f_*(\ker \varphi) = 0\}$
- 10. Prove that $R^2 \cong (R^2)^*$.

1	2	3	4	5	6	7	8	9	10	total (100)