Algebra I, MAT 5173

Final, December 13, 1995

Instructor: D. Gokhman

Name: \qquad Pseudonym: \qquad

1. (20 pts.) Suppose the order p of a group G is prime. Prove that $G \cong \mathbf{Z}_{p}$.
2. (24 pts.) Let H be the subgroup of S_{4} generated by (1,2,3). Compute the left cosets of H in S_{4}.
3. (20 pts.) Let $N=\left\{\sigma \in S_{5}: \sigma(2)=2\right\}$. Prove that $N<S_{5}$ and $N \nless S_{5}$.
4. (20 pts.) Prove that $A_{n} \triangleleft S_{n}$
5. (30 pts.) Suppose $f: G \rightarrow H$ is a group homomorphism, $K=\operatorname{ker} f$ and $N<G$. Prove that
(a) $f^{-1}(f(N))=K N$
(b) if H is abelian and $K<N$, then $N \triangleleft G$.
6. (20 pts.) What is the free group on $\{x\}$? Justify your answer.
7. (30 pts.) True or false (circle your choice, no justification necessary):

T $\mathrm{F} \quad$ (a) Suppose $H \triangleleft G$. If H and G / H are finitely generated, then G is finitely generated.
T F (b) If $H, K<G$, then $H K<G$
T F (c) Every permutation is a product of disjoint cycles.
T F (d) Every cycle is a product of 2-cycles.
T F (e) Suppose G and H are abelian groups. There are more morphisms from G to H in the category of groups than in the category of abelian groups.

1	2	3	4	5	6	7	total (164)

