Algebra I, MAT 5173 Final, December 13, 1995 Instructor: D. Gokhman

Name: _____ Pseudonym: _____

- 1. (20 pts.) Suppose the order p of a group G is prime. Prove that $G \cong \mathbf{Z}_p$.
- 2. (24 pts.) Let H be the subgroup of S_4 generated by (1, 2, 3). Compute the left cosets of H in S_4 .
- 3. (20 pts.) Let $N = \{ \sigma \in S_5 : \sigma(2) = 2 \}$. Prove that $N < S_5$ and $N \not \lhd S_5$.
- 4. (20 pts.) Prove that $A_n \triangleleft S_n$
- 5. (30 pts.) Suppose $f: G \to H$ is a group homomorphism, $K = \ker f$ and N < G. Prove that
 - (a) $f^{-1}(f(N)) = KN$
 - (b) if H is abelian and K < N, then $N \lhd G$.
- 6. (20 pts.) What is the free group on $\{x\}$? Justify your answer.
- 7. (30 pts.) True or false (circle your choice, no justification necessary):
- T F (a) Suppose $H \lhd G$. If H and G/H are finitely generated, then G is finitely generated.
- T F (b) If H, K < G, then HK < G
- T F (c) Every permutation is a product of disjoint cycles.
- T F (d) Every cycle is a product of 2-cycles.
- T F (e) Suppose G and H are abelian groups. There are more morphisms from G to H in the category of groups than in the category of abelian groups.

1	2	3	4	5	6	7	total (164)