Name: _

Please show all work and justify your answers.

- 1. Suppose X and Y are topological spaces and $p: X \times Y \to X, q: X \times Y \to Y$, p(x, y) = x, q(x, y) = y are the canonical projections from the product.
 - (a) Prove that p and q are open maps (forward images of open sets are open).
 - (b) Provide a concrete example to show that p and q do not necessarily carry closed sets to closed sets.
- 2. Define an equivalence relation on the cylinder $S^1 \times I$ by $[e^{i\theta}, t] \sim [e^{i\theta'}, t'] \Leftrightarrow t = t' = 0$ or t = t' = 1 or $\theta = \theta'$ and t = t'. Prove that the quotient space $(S^1 \times I) / \sim$ is homeomorphic to S^2 .
- 3. Prove that two finite discrete topological spaces are homotopy equivalent if, and only if, they have the same number of elements.
- 4. Suppose X is a topological space. Recall that a path in X is a continuous map from the unit interval I to X. Prove that
 - (a) if $x_0, x_1 \in X$ and there is a path $s: I \to X$ with $s(0) = x_0$, $s(1) = x_1$, then there is a path $s': I \to X$ with $s'(0) = x_1$, $s'(1) = x_0$
 - (b) if $p, q: I \to X$ are paths such that p(1) = q(0), then there is a path $r: I \to X$ such that r(0) = p(0), r(1) = q(1)
 - (c) if X is contractible (homotopy equivalent to a singleton), then X is path connected (and thus connected).

Hint: First prove that if $H: X \times I \to X$ is a homotopy, then for each $x \in X$ the restriction of H to $\{x\} \times I$ gives a path in X. Then use parts (a), (b).

1	2	3	4	total (40)