Name: ____

- 1. (20 pts.) Suppose $f: X \to Y$ is a function, $A \subseteq X$, and $B \subseteq Y$.
 - (a) Prove that $X \setminus f^{-1}(B) = f^{-1}(Y \setminus B)$.
 - (b) Disprove by counterexample that $Y \setminus f(A) = f(X \setminus A)$.
- 2. (20 pts.) Let $A = \{(x, y) \in \mathbb{R}^2 : x > 1\}$ Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$f(x,y) = \begin{cases} (x,y) & \text{if } (x,y) \in A \\ (0,0) & \text{if } (x,y) \notin A \end{cases}$$

- (a) Sketch A. Prove that A is open in \mathbb{R}^2 .
- (b) Show that f is not continuous and illustrate with a sketch.
- 3. (25 pts.) In each case give an example or state that there can be no such example.
 - (a) A collection of open subsets of \mathbf{R}^2 whose union is not open.
 - (b) A collection of open subsets of \mathbf{R}^2 whose intersection is not open.
 - (c) An open cover for a set A without a finite subcover, where
 - (i) $A = \{ u \in \mathbf{R}^2 : 0 < |u| \le 1 \}$
 - (ii) $A = \{ u \in \mathbf{R}^2 : |u| \le 1 \}$
 - (iii) $A = \{ u \in \mathbf{R}^2 : |u| < 1 \}$
- 4. (20 pts.) True/false circle your choice. Justification is not required. Throughout this problem f is a <u>continuous</u> function.
- T F (a) $f(A) \subseteq B \Leftrightarrow A \subseteq f^{-1}(B)$.
- T F (b) If X is compact, then f(X) is compact.
- T F (c) If $f: \mathbf{R} \to \mathbf{R}$, then there exists $x \in \mathbf{R}$ such that f(x) = 0.
- T F (d) A subset A of \mathbf{R}^2 is compact $\Leftrightarrow A$ is closed and bounded.
- T F (e) A subset A of \mathbf{R}^2 is closed $\Leftrightarrow A$ is not open.

1	2	3	4	total (85)	%