Name:

1. (20 pts.) Suppose $f: X \rightarrow Y$ is a function, $A \subseteq X$, and $B \subseteq Y$.
(a) Prove that $X \backslash f^{-1}(B)=f^{-1}(Y \backslash B)$.
(b) Disprove by counterexample that $Y \backslash f(A)=f(X \backslash A)$.
2. (20 pts.) Let $A=\left\{(x, y) \in \mathbf{R}^{2}: x>1\right\}$ Define $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by

$$
f(x, y)= \begin{cases}(x, y) & \text { if }(x, y) \in A \\ (0,0) & \text { if }(x, y) \notin A\end{cases}
$$

(a) Sketch A. Prove that A is open in \mathbf{R}^{2}.
(b) Show that f is not continuous and illustrate with a sketch.
3. (25 pts.) In each case give an example or state that there can be no such example.
(a) A collection of open subsets of \mathbf{R}^{2} whose union is not open.
(b) A collection of open subsets of \mathbf{R}^{2} whose intersection is not open.
(c) An open cover for a set A without a finite subcover, where
(i) $A=\left\{u \in \mathbf{R}^{2}: 0<|u| \leq 1\right\}$
(ii) $A=\left\{u \in \mathbf{R}^{2}:|u| \leq 1\right\}$
(iii) $A=\left\{u \in \mathbf{R}^{2}:|u|<1\right\}$
4. (20 pts.) True/false - circle your choice. Justification is not required.

Throughout this problem f is a continuous function.
T F (a) $f(A) \subseteq B \Leftrightarrow A \subseteq f^{-1}(B)$.
T F (b) If X is compact, then $f(X)$ is compact.
T F (c) If $f: \mathbf{R} \rightarrow \mathbf{R}$, then there exists $x \in \mathbf{R}$ such that $f(x)=0$.
T F (d) A subset A of \mathbf{R}^{2} is compact $\Leftrightarrow A$ is closed and bounded.
T F (e) A subset A of \mathbf{R}^{2} is closed $\Leftrightarrow A$ is not open.

1	2	3	4	total (85)	$\%$

