Nar	ne:	Pseudonym:						
Please show all work. (Notation: $S^n = \{u \in \mathbf{R}^{n+1}: u = 1\}, D^n = \{u \in \mathbf{R}^n: u \le 1\}$ 1. (15 pts.) Let $A = \{(x, y) \in \mathbf{R}^2: x - y \ge 1\}$. Define $f: \mathbf{R}^2 \to \mathbf{R}^2$ by								
		scribe or sketch the set of points of discontinuity of f . strate the discontinuity of f with a sketch.						
2	. (30 pts.) example	-						
	(b) $A =$ (c) $A =$ (d) A c	collection of closed subsets of the plane whose union is not closed. = $f^{-1}(B)$, where f is continuous, A is not connected, and B is connected. = $f^{-1}(B)$, where f is continuous, A is not compact, and B is compact. continuous $f: D^2 \to S^1$ such that f restricted to S^1 is the identity function. open cover for a set A without a finite subcover, where						
	(i)	$A = \{ u \in \mathbf{R}^2 : 1 < u \le 2 \} \text{(ii)} \ A = \{ u \in \mathbf{R}^2 : 1 \le u \}$						
3	(-)	Are the following spaces connected? If not, construct a separation.						
	(a) $\{(x, y)\}$	$(x,y) \in \mathbf{R}^2$: $y = mx$, where $m \in \mathbf{Q}$ (b) $\{(x,y) \in \mathbf{R}^2$: $x + y \in \mathbf{Q}$						
4	If X and	If X and Y are homeomorphic, construct a homeomorphism $f: X \to Y$. d Y are not homeomorphic, why not?						
	(a) $X =$	= R , $Y = (0, 1)$. (b) $X = $ R , $Y = S^1$. (c) $X = S^1$, $Y = S^2$.						
5	number) For the following transformations of the plane f compute the winding of the image of the unit circle relative to the origin.						
	(a) $f(x)$	f(x,y) = (-x,y) (b) $f(x,y) = (-x,-y)$ (c) $f(x,y) = (x-2,y)$						
	(-)	Construct a homotopy in the plane from the unit circle to the origin.						
	. – ,	True/false — circle your choice. Justification is not required.						
Г F Г F		a map f is continuous, 1-1, onto, then f is a homeomorphism. (A) $\subset B \leftrightarrow A \subset f^{-1}(B)$						
Г F Г F		$A) \subseteq B \Leftrightarrow A \subseteq f^{-1}(B).$ subset A of \mathbf{R}^2 is closed $\Leftrightarrow \mathbf{R}^2 \setminus A$ is open.						
ΓF	(d) A s	subset A of \mathbf{R}^2 is not compact $\Leftrightarrow A$ is closed but not bounded.						
TF TF		$f: S^1 \to S^1$ is continuous, then there exists p with $f(p) = p$. y two curves in the plane are homotopic.						

Have a great break! – D

1	2	3	4	5	6	7	total (120)