Name: Pseudonym: \qquad
Please show all work. (Notation: $S^{n}=\left\{u \in \mathbf{R}^{n+1}:|u|=1\right\}$, $D^{n}=\left\{u \in \mathbf{R}^{n}:|u| \leq 1\right\}$)

1. (15 pts.) Let $A=\left\{(x, y) \in \mathbf{R}^{2}: x-y \geq 1\right\}$. Define $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by
(a) Sketch A.

$$
f(x, y)=\left\{\begin{array}{cl}
(x, y) & \text { if }(x, y) \in A \\
(0,0) & \text { if }(x, y) \notin A
\end{array}\right.
$$

(b) Describe or sketch the set of points of discontinuity of f.
(c) Illustrate the discontinuity of f with a sketch.
2. (30 pts.) In each case construct an example or state that there can be no such example.
(a) A collection of closed subsets of the plane whose union is not closed.
(b) $A=f^{-1}(B)$, where f is continuous, A is not connected, and B is connected.
(c) $A=f^{-1}(B)$, where f is continuous, A is not compact, and B is compact.
(d) A continuous $f: D^{2} \rightarrow S^{1}$ such that f restricted to S^{1} is the identity function.
(e) An open cover for a set A without a finite subcover, where

$$
\text { (i) } A=\left\{u \in \mathbf{R}^{2}: 1<|u| \leq 2\right\} \quad \text { (ii) } A=\left\{u \in \mathbf{R}^{2}: 1 \leq|u|\right\}
$$

3. (10 pts.) Are the following spaces connected? If not, construct a separation.
(a) $\left\{(x, y) \in \mathbf{R}^{2}: y=m x\right.$, where $\left.m \in \mathbf{Q}\right\}$
(b) $\left\{(x, y) \in \mathbf{R}^{2}: x+y \in \mathbf{Q}\right\}$
4. (15 pts.) If X and Y are homeomorphic, construct a homeomorphism $f: X \rightarrow Y$. If X and Y are not homeomorphic, why not?
(a) $X=\mathbf{R}, Y=(0,1)$.
(b) $X=\mathbf{R}, Y=S^{1}$.
(c) $X=S^{1}, Y=S^{2}$.
5. (15 pts.) For the following transformations of the plane f compute the winding number of the image of the unit circle relative to the origin.
(a) $f(x, y)=(-x, y)$
(b) $f(x, y)=(-x,-y)$
(c) $f(x, y)=(x-2, y)$
6. (5 pts.) Construct a homotopy in the plane from the unit circle to the origin.
7. (30 pts.) True/false - circle your choice. Justification is not required.

T F (a) If a map f is continuous, $1-1$, onto, then f is a homeomorphism.
T $\quad \mathrm{F} \quad$ (b) $f(A) \subseteq B \Leftrightarrow A \subseteq f^{-1}(B)$.
T $\quad \mathrm{F} \quad$ (c) A subset A of \mathbf{R}^{2} is closed $\Leftrightarrow \mathbf{R}^{2} \backslash A$ is open.
T F (d) A subset A of \mathbf{R}^{2} is not compact $\Leftrightarrow A$ is closed but not bounded.
T F (e) If $f: S^{1} \rightarrow S^{1}$ is continuous, then there exists p with $f(p)=p$.
T F (f) Any two curves in the plane are homotopic.
$\mathcal{H a v e}$ a great break! $\quad-\mathcal{D}$

1	2	3	4	5	6	7	total (120)

