Name: \qquad
Please show all work and justify your statements.

1. Prove that equations $\operatorname{gcd}(x, y)=g$ and $x y=b$ have simultaneous solutions over positive integers if, and only if, $g^{2} \mid b$.
2. Prove that if a and b are positive integers, then $\operatorname{gcd}(a, a+b) \mid b$.
3. Prove that if a and b are positive integers such that $\operatorname{gcd}(a, b)=\operatorname{lcm}(a, b)$, then $a=b$.
4. Find all integer solutions of $20 x \equiv 8 \bmod 30$.
5. Find all integer solutions of $15 x+21 y=6$.
6. Solve the system of congruences $x \equiv 2 \bmod 5, x \equiv 5 \bmod 7, x \equiv 3 \bmod 8$.
7. Solve $x^{3}+x^{2} \equiv 5 \bmod 343$.
8. Solve the recurrence $u_{n}=3 u_{n-1}-2 u_{n-2}$ subject to initial conditions $u_{0}=a, u_{1}=b$.
9. Prove that if n is a positive integer, then $\sum_{d \mid n} d \mu(d)=(-1)^{\omega(n)} \varphi(n) s(n) / n$, where $s(n)$ is the largest square free divisor of n, i.e. $s(n)=\prod_{p \mid n} p$.
You may use the fact that $\varphi(n)=n \prod_{p \mid n}(1-1 / p)$.

1	2	3	4	5	6	7	8	9	total (90)	$\%$

