Name:

Please show all work and justify your statements.

- 1. Prove that equations gcd(x, y) = g and xy = b have simultaneous solutions over positive integers if, and only if, $g^2|b$.
- 2. Prove that if a and b are positive integers, then gcd(a, a + b)|b.
- 3. Prove that if a and b are positive integers such that gcd(a, b) = lcm(a, b), then a = b.
- 4. Find all integer solutions of $20x \equiv 8 \mod 30$.
- 5. Find all integer solutions of 15x + 21y = 6.
- 6. Solve the system of congruences $x \equiv 2 \mod 5$, $x \equiv 5 \mod 7$, $x \equiv 3 \mod 8$.
- 7. Solve $x^3 + x^2 \equiv 5 \mod 343$.
- 8. Solve the recurrence $u_n = 3u_{n-1} 2u_{n-2}$ subject to initial conditions $u_0 = a, u_1 = b$.
- 9. Prove that if n is a positive integer, then $\sum_{d|n} d\mu(d) = (-1)^{\omega(n)} \varphi(n) s(n)/n$, where s(n) is the largest square free divisor of n, i.e. $s(n) = \prod_{p|n} p$. You may use the fact that $\varphi(n) = n \prod (1 - 1/n)$

You may use the fact that $\varphi(n) = n \prod_{p|n} (1 - 1/p).$

1	2	3	4	5	6	7	8	9	total (90)	%