Name: _

Please show all work.

- 1. Determine for which natural numbers we have $n! > 2^n$ and prove it by induction.
- 2. Suppose $\alpha, \beta \in \Sigma_n$ are permutations of $\{1, 2, 3, 4, 5\}$ given by

- 3. Suppose G is a finite group and $x \in G$. Prove:
 - (a) x has finite order.
 - (b) $x^n = e$ if and only if the order of x divides n.
- 4. Prove that the set of all complex fourth roots of unity $H = \{z \in \mathbb{C}: z^4 = 1\}$ is a cyclic subgroup of \mathbb{C}^* of order 4

1	2	3	4	total (40)