Name: \qquad

Please show all work.

1. Determine for which natural numbers we have $n!>2^{n}$ and prove it by induction.
2. Suppose $\alpha, \beta \in \Sigma_{n}$ are permutations of $\{1,2,3,4,5\}$ given by

x	1	2	3	4	5	x	1	2	3	4	5
$\alpha(x)$	3	2	4	1	5	$\beta(x)$	4	5	1	3	2

Find $(\alpha \beta)^{-1}$ and $\alpha^{-1} \beta^{-1}$
3. Suppose G is a finite group and $x \in G$. Prove:
(a) x has finite order.
(b) $x^{n}=e$ if and only if the order of x divides n.
4. Prove that the set of all complex fourth roots of unity $H=\left\{z \in \mathbf{C}: z^{4}=1\right\}$ is a cyclic subgroup of \mathbf{C}^{*} of order 4

1	2	3	4	total (40)

