Name:

Please show all work.

- 1. Sketch the subgroup lattice for \mathbf{Z}_{20} . For each subgroup, list all the elements and indicate all possible generators of the subgroup.
- 2. Suppose G is a group and $a \in G$ such that |a| = 13. Prove there exists $b \in G$ such that $a = b^9$
- 3. Suppose $\alpha = (4, 3, 7, 8, 9)(1, 3, 7, 5, 2)(2, 7, 6)$ is a permutation in cycle notation.
 - (a) Express α as a product of disjoint cycles.
 - (b) Find the order of α . Explain.
 - (c) Find the parity of α . Explain.
 - (d) Simplify α^{659}
- 4. Prove that $5\mathbf{Z}/40\mathbf{Z}$ is isomorphic to \mathbf{Z}_8
- 5. Solve the following system of two congruence equations

$$4x \equiv 10 \mod 13$$

$$6x \equiv 9 \mod{11}$$

Hint: first separately solve each congruence for x

- 6. (a) How many group homomorphisms are there from \mathbf{Z} to $\mathbf{Z}_9 \times \mathbf{Z}_{25}$? Explain.
 - (b) How many of these are surjective? Explain.
 - (c) How many of these are injective? Explain.

1	2	3	4	5	6	total (60)