Name: \qquad
Please show all work.

1. Sketch the subgroup lattice for \mathbf{Z}_{20}. For each subgroup, list all the elements and indicate all possible generators of the subgroup.
2. Suppose G is a group and $a \in G$ such that $|a|=13$. Prove there exists $b \in G$ such that $a=b^{9}$
3. Suppose $\alpha=(4,3,7,8,9)(1,3,7,5,2)(2,7,6)$ is a permutation in cycle notation.
(a) Express α as a product of disjoint cycles.
(b) Find the order of α. Explain.
(c) Find the parity of α. Explain.
(d) Simplify α^{659}
4. Prove that $5 \mathbf{Z} / 40 \mathbf{Z}$ is isomorphic to \mathbf{Z}_{8}
5. Solve the following system of two congruence equations

$$
\begin{aligned}
4 x & \equiv 10 \bmod 13 \\
6 x & \equiv 9 \bmod 11
\end{aligned}
$$

Hint: first separately solve each congruence for x
6. (a) How many group homomorphisms are there from \mathbf{Z} to $\mathbf{Z}_{9} \times \mathbf{Z}_{25}$? Explain.
(b) How many of these are surjective? Explain.
(c) How many of these are injective? Explain.

1	2	3	4	5	6	total (60)

