Name: .

Please show all work.

- 1. Sketch the subgroup lattice for \mathbf{Z}_{20} . For each subgroup, list all the elements and indicate all possible generators of the subgroup.
- 2. Suppose $\alpha = (4, 3, 7, 8, 9)(1, 3, 7, 5, 2)(2, 7, 6)$ is a permutation in cycle notation.
 - (a) Express α as a product of disjoint cycles.
 - (b) Find the order of α . Explain.
 - (c) Find the parity of α . Explain.
 - (d) Simplify α^{659}
- 3. (a) How many group homomorphisms are there from \mathbf{Z} to $\mathbf{Z}_9 \times \mathbf{Z}_{25}$? Explain.
 - (b) How many of these are surjective? Explain.
 - (c) How many of these are injective? Explain.
- 4. Suppose R is a finite commutative ring with unity and $a \in R, a \neq 0$. Show that a is either a zero divisor or a unit (but not both).
- 5. Let A be the set of all polynomials in $\mathbf{Z}[x]$, whose coefficients are divisible by 3.
 - (a) Show the A is an ideal of $\mathbf{Z}[x]$
 - (b) Is A a maximal ideal of $\mathbf{Z}[x]$? Explain.

1	2	3	4	5	6	total (60)