1. Let $G=\{x \in \mathbf{R}:(\exists m, n \in \mathbf{Z}) x=m+n \sqrt{2}\}$.
(a) Prove $m, n$ are unique for each $x \in G$.

Hints: (i) subtract, (ii) prove $m+n \sqrt{2}=0 \Rightarrow m=n=0$
(b) Prove $G$ is a group under the usual addition of real numbers.
2. Let $G$ be as above.
(a) Prove the relation on $\mathbf{R}$ defined by $x \sim x^{\prime} \Leftrightarrow x-x^{\prime} \in G$ is an equivalence relation.
(b) Describe the equivalence class of 0 with respect to the above equivalence relation. List several typical representatives of the class. Same for the equivalence class of $\pi$.
(c) Show that addition of equivalence classes is well defined.

Hint: prove $x \sim x^{\prime}, y \sim y^{\prime} \Rightarrow x+y \sim x^{\prime}+y^{\prime}$
3. Suppose $G$ is a group and for each $s \in G$ define $\varphi_{s}(x)=s x s^{-1}$
(a) Show that $(\forall s \in G) \varphi_{s}$ is an automorphism of $G$
(b) Prove $G$ is Abelian $\Leftrightarrow(\forall s \in G) \varphi_{s}$ is the identity on $G$

