- 1. Let $G = \{x \in \mathbf{R} : (\exists m, n \in \mathbf{Z}) \ x = m + n\sqrt{2}\}.$
 - (a) Prove m, n are unique for each x ∈ G.
 Hints: (i) subtract, (ii) prove m + n√2 = 0 ⇒ m = n = 0
 - (b) Prove G is a group under the usual addition of real numbers.
- 2. Let G be as above.
 - (a) Prove the relation on **R** defined by $x \sim x' \Leftrightarrow x x' \in G$ is an equivalence relation.
 - (b) Describe the equivalence class of 0 with respect to the above equivalence relation. List several typical representatives of the class. Same for the equivalence class of π .
 - (c) Show that addition of equivalence classes is well defined. Hint: prove $x \sim x', y \sim y' \Rightarrow x + y \sim x' + y'$
- 3. Suppose G is a group and for each $s \in G$ define $\varphi_s(x) = sxs^{-1}$
 - (a) Show that $(\forall s \in G) \varphi_s$ is an automorphism of G
 - (b) Prove G is Abelian $\Leftrightarrow (\forall s \in G) \ \varphi_s$ is the identity on G