- 1. Suppose G is a group.
 - (a) If $a \in G$, $n \in \mathbb{N}$, and $a^n = e$, prove that the order |a| divides n.
 - (b) Suppose a, b ∈ G commute, have finite orders and the subgroups they generate are essentially disjoint. Prove that |ab| = lcm(|a|, |b|).
 Definitions: Any x ∈ G generates a cyclic subgroup ⟨x⟩ = {xⁿ: n ∈ Z}. If H and K are subgroups of G, we say H and K are are essentially disjoint when H ∩ K = {e}.
- 2. For each $k \in \mathbf{Z}$ define the set of all integer multiples $\langle k \rangle = k\mathbf{Z} = \{kn: n \in \mathbf{Z}\}.$
 - (a) Prove that $\langle k \rangle$ is a subgroup of **Z**
 - (b) If H is a nontrivial subgroup of **Z**, prove that there exists $k \in \mathbf{N}$ such that $H = \langle k \rangle$ Hint: Consider the set of all positive elements of H.
- 3. Suppose $\varphi: \mathbf{Z}_{35} \to \mathbf{Z}_{14}$ is a group homomorphism and $\varphi(4) = 12$.
 - (a) Find a formula for φ .
 - (b) Find the image and the kernel of φ . What are the orders of these subgroups and how are these orders related? Explain.

Hint: Fibers of φ partition G. How big is each nonempty fiber and how many of them are there?